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We show that correlations inconsistent with any locally causal description can be a generic feature of

measurements on entangled quantum states. Specifically, spatially separated parties who perform local

measurements on a maximally entangled state using randomly chosen measurement bases can, with

significant probability, generate nonclassical correlations that violate a Bell inequality. For n parties using

a Greenberger-Horne-Zeilinger state, this probability of violation rapidly tends to unity as the number of

parties increases. We also show that, even with both a randomly chosen two-qubit pure state and randomly

chosen measurement bases, a violation can be found about 10% of the time. Among other applications,

our work provides a feasible alternative for the demonstration of Bell inequality violation without a shared

reference frame.
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One of the most remarkable features of quantum me-
chanics is that distant measurements can exhibit correla-
tions that are inconsistent with any locally causal
description (LCD) [1]. These quantum correlations are
signatures of entanglement [2], and serve as a resource
[3] for a range of classically impossible information pro-
cessing tasks such as quantum key distribution [4], tele-
portation [5], and reduced communication complexity [6].

Not all quantum states are useful for quantum informa-
tion processing tasks. Even for entangled states, nonclass-
ical correlations are not an immediate consequence of the
entanglement present in such systems (see Ref. [7] and
references therein). They also depend crucially on the
choice of measurements to which they are subjected, and
specifically how these measurements are correlated be-
tween parties. For example, in the standard scenarios to
violate a Bell-Clauser-Horne-Shimony-Holt (Bell-CHSH)
inequality [1,8] or more generally an n-party inequality
using a Greenberger-Horne-Zeilinger (GHZ) state, a maxi-
mum violation is achieved by all parties using specific
measurements in the common x-y plane [9]. In an experi-
ment, this requires some care [10]; for two parties using
polarization-encoded single-photon pairs transmitted
through long birefringent optical fibers, the random rota-
tion of the polarization of each photon is first compensated
through some method of alignment in order to set this
frame [11]. With larger numbers of parties, greater viola-
tions can be achieved but more parties require an increas-
ing complexity of alignments.

Several approaches to circumvent this problem have
been studied. Encoded entangled states that are invariant
with respect to some collective unitary operations [12,13]
can be used, but generally require much more complicated
state preparation as well as joint measurements on multiple
spins. Alternatively, an alignment of frames can be per-

formed through the coherent exchange of quantum systems
[11,14] or by supplementing each system with a small
quantum reference frame of bounded size [15]. Such solu-
tions are resource intensive given that this alignment con-
sumes many of these quantum resources that could
otherwise be used to generate useful correlations.
Here, we prove that such resource-intensive approaches

are unnecessary, and that nonclassical correlations occur
with high probability even without any alignment of local
measurements. Specifically, we investigate the detection of
nonlocal correlations wherein each party uses randomly
chosen measurement bases. Ruling out LCD in this sce-
nario cannot be achieved deterministically for a general
entangled quantum state [13]. However, we demonstrate
that the probability of observing correlations inconsistent
with LCD using randomly chosen measurement bases can
be remarkably high. Although one might naively expect
that increasing the number of parties participating in the
test (and the corresponding complexity of alignments)
would only complicate matters, we show that the proba-
bility of demonstrating a violation rapidly approaches
unity as the number of parties increases. Finally, we dem-
onstrate the possibility of two parties violating a Bell
inequality using both randomly chosen measurements
and a randomly chosen pure state.
We consider a typical scenario of an n-party

Bell experiment using spin-1=2 particles, wherein a verifier
prepares N � 1 copies of the n-partite GHZ state

jGHZin ¼ 1ffiffiffi
2

p ðj0i1j0i2 � � � j0in þ j1i1j1i2 � � � j1inÞ; (1)

and distributes them to n parties. Each particle is subjected
to a local measurement with two possible outcomes, �1.
The measurement for each particle is chosen randomly,
with equal probability, from a set of two measurement
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bases, defined for the kth party by a pair of spatial direc-

tions �½k�
sk ð�;�Þ, with sk ¼ 1, 2 labeling the bases. For

spins measured via a Stern-Gerlach device, these directions
correspond to the orientation of the magnetic field in the
measurement apparatus. However, an equivalent picture in
terms of spatial directions can be used for any quantum
systems described by a two-dimensional Hilbert space
(e.g., the polarization encoding of single photons) via the
Bloch sphere. After the completion of all measurements,
the n parties return to the verifier a list containing only the
label sk of which measurement they performed for each
particle and the value�1 of the outcome they obtained for
that measurement.

A relevant Bell inequality for this scenario is the
n-partite Mermin-Ardehali-Belinskiı̌-Klyshko (MABK)
inequality [16–18],

S ðnÞ
MABK¼

��������
X2

s1;...;sn¼1

�ðs1; . . . ;snÞEðs1; . . . ;snÞ
���������2n�ð1=2Þ;

(2)

where

�ðs1; . . . ;snÞ¼
X

k1;...;kn¼�1

cos

�
�

4

�
nþ1�Xn

l¼1

kl

��Yn
j¼1

k
sj�1
j :

(3)

Here, the n-partite correlation function Eðs1; . . . ; snÞ is
defined to be the expectation value of the product of
measurement outcomes (�1) given that the kth party
measured their spin in the basis sk. When n ¼ 2, the
MABK inequality is equivalent to the familiar Bell-
CHSH inequality SCHSH ¼ jEð1; 1Þ þ Eð1; 2Þ þ Eð2; 1Þ �
Eð2; 2Þj � 2 [1,8].

In a standard Bell experiment, the maximal violations
for a given Bell inequality are achieved by choosing the

local orientations �½k�
1 and �½k�

2 to be perpendicular [9],

i.e., �½k�
1 ��½k�

2 ¼ 0, and by fixing the relative orientations
of these measurements with the other experimentalists (and
the verifier who prepared the systems). The latter neces-
sitates the use of a shared reference frame; in what follows,
we will see what can be achieved without a shared refer-
ence frame.

We will first consider the completely unconstrained
case, wherein each party k chooses both members of their

pair of directions �½k�
sk for sk ¼ 1, 2 independently and

uniformly from the set of all possible directions. We refer
to this case as random isotropic measurements (RIM). In

such a scenario, we determine the probability pjGHZni
MABK that

the measurement statistics received by the verifier will give
rise to a violation of the MABK inequality of Eq. (2), given
by

pjGHZni
MABK ¼ 1

ð4�Þ2n
Z Y

k¼1...n
sk¼1;2

d�½k�
sk f

MABK
n ðf�½k�

sk gnk¼1Þ; (4)

where d�½k�
sk =4� is the Haar measure associated with mea-

surement direction�½k�
sk and fMABK

n ðf�½k�
sk gnk¼1Þ is a function

that returns 1 if orientations f�½k�
sk gnk¼1 give rise to a corre-

lation (i.e., measurement statistics), that violates the
MABK inequality and 0 otherwise. These integrals simply
pick out those measurement directions that will give a
violation, normalizing them against the total volume of
possible measurement directions.
For the detection of nonclassical correlation, we can

allow the verifier to make use of the freedom in relabeling
all measurement settings and/or outcomes and/or parties
[17,19]. To appreciate the importance of this fact, consider
as an example the following choice of local measurement
for the n ¼ 2 case: f�z; �xg for Alice and f 1ffiffi

2
p ð�x þ �zÞ;

1ffiffi
2

p ð�x � �zÞg for Bob. Suppose that Alice has labeled her

measurements such that �z $ s1 ¼ 1 and �x $ s1 ¼ 2,
while Bob has labeled his measurements such that
1ffiffi
2

p ð�x þ �zÞ $ s2 ¼ 1 and 1ffiffi
2

p ð�x � �zÞ $ s2 ¼ 2, then

the verifier will find that as it is, SCHSH vanishes, and hence
does not lead to a Bell-CHSH inequality violation.
However, if the verifier is also given the freedom to relabel
the measurement settings, they could use, instead, the
following labeling for Alice’s measurements: �x $ s1 ¼
1 and �z $ s1 ¼ 2. As opposed to the original labeling,
this new labeling unveils measurement statistics that vio-
late the Bell-CHSH inequality maximally. We say that two
Bell inequalities are equivalent if they can be obtained
from each other by relabeling the measurement settings
and/or outcomes and/or parties [17,19]. In calculating the
probability of observing a violation, we clearly want to
include all such equivalent inequalities.

We numerically calculate pjGHZni
MABK , using the relabeling

strategy to test a given set of experimental data against all
2nþ1 equivalent MABK inequalities [20]; see Fig. 1. The
special case of n ¼ 2 can be solved analytically (see
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FIG. 1 (color online). Probability of finding a nonclassical
n-partite GHZ correlation. The two sets of data at the bottom
and top are, respectively, for correlation generated from random
isotropic measurements (RIM) and random orthogonal measure-
ments (ROM). The markers are for the scenarios when the
verifier has access to (1) the 2nþ1 MABK inequalities (4 for
RIM, � for ROM), and (2) the 22

n
WWZB inequalities (5 for

RIM, þ for ROM).
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Ref. [21] for details) and is found to be 2ð�� 3Þ � 28:3%
(see also Ref. [22] for contrasting results). For n > 2, the
probability is less than this amount but increases mono-
tonically for n > 3 up to the limit of our analysis, n ¼ 15.
Note, however, it appears that this probability is asymptoti-
cally approaching a value that is less than unity.

The case of n ¼ 2 appears somewhat anomalous. The
reason is that, for n ¼ 2, the equivalence class of Bell-

CHSH inequalities obtained by relabeling Sð2Þ
MABK (or

SCHSH) is both necessary and sufficient for determining if
a given set of experimental statistics generated by perform-
ing two binary-outcome measurements per site admits a
LCD [23]. In other words, in the space of measurement
statistics generated by performing such measurements, all
nonclassical correlations can be detected by this equiva-
lence class of inequalities.

For n > 2, there are (i) Bell inequalities with n-partite
correlation functions that are not of the MABK form (2)
and (ii) Bell inequalities involving less-than-n-partite cor-
relation functions. To determine if a given correlation for
n > 2 is incompatible with any LCD, we need to test the
measurement statistics against the complete set of Bell
inequalities that are relevant to the particular experiment.
For a small number of parties, this can be achieved effi-
ciently using linear programming (see [21,24]) or by
checking the correlation directly against the complete set
of relevant Bell inequalities. Our results are summarized in
Table I.

These results clearly indicate that the probability of a
violation rapidly approaches unity with increasing n. The
input to the linear program, however, scales exponentially
with n [21], thus making it intractable to determine the
probability of violation reliably for larger values of n. To
obtain some insight into the behavior, we can restrict our
attention to the extensive set of 22

n
n-partite correlation

inequalities discovered independently by Werner and Wolf
[17] and Żukowski and Brukner [18] (WWZB). While
violation of these inequalities is still sufficient to rule out
LCD, the converse is generally not true. Thus, using this set
of inequalities yields a lower bound on the probability that
a given correlation is nonclassical.

To test if a given correlation satisfies all of the WWZB
inequalities is equivalent to testing if it satisfies the follow-

ing nonlinear inequality [17,18]

X
k1;...;kn¼�1

��������
X2

s1;...;sn¼1

Yn
j¼1

k
sj�1
j Eðs1; . . . ; snÞ

��������� 2n: (5)

We have numerically computed the probability of finding a
randomly generated correlation from RIM to violate in-
equality (5) for n � 15. As can be seen in Fig. 1, this
probability generally increases with n and is above 50%
for n ¼ 15. However, it is inconclusive whether this proba-
bility asymptotes to unity or not for large n.
Finally, we consider another mechanism by which par-

ties who do not share a reference frame can increase the
probability of observing a violation. So far we have con-
sidered each of the two local measurement bases for each
party to be chosen independently and isotropically.
However, because the optimal violations are typically
found when the pair of local measurement directions are
orthogonal [9], we can consider a random selection of
measurement bases under the constraint that each local
pair are orthogonal. We have repeated the above calcula-

tions with this constraint (i.e., that �½k�
1 ��½k�

2 ¼ 0); we
refer to this distribution as random orthogonal measure-
ments (ROM). The results reveal a significant increase in
the probability of a violation, as shown in Fig. 1 and
Table I. For larger values of n, our results for the WWZB
inequalities also strongly suggest that the probability
asymptotes to unity for large n.
Our results so far have all made use of a fixed maximally

entangled pure state (1) (although clearly the local bases in
which this state is defined are irrelevant for our result). We
can also consider how the probability of observing a vio-
lation of LCD varies with the degree of entanglement of
the distributed quantum state. For n ¼ 2, a pure quantum
state can always be written as j�i ¼ cos�j0i1j0i2 þ
sin�j1i1j1i2 for some local bases. Numerically, we can
compute the probability of violation as a function of en-
tanglement (for details, see [21]). With this result, we can
determine the probability of observing a violation of LCD
using both randomly chosen measurement bases and a
randomly chosen state. We sample two-qubit pure states
randomly and uniformly from C2 	 C2 according to the
SUð4Þ Haar measure. Given that our results are indepen-
dent of local choice of bases, we can reproduce this distri-
bution by sampling Schmidt coefficients as for single-qubit
mixed states from the uniform Bloch ball [25]. The rele-
vant measure is the Hilbert-Schmidt measure on a single
qubit, i.e., PHSðrÞ ¼ 24r2, where r ¼ cos2�

2 is the length of

the Bloch vector (Ref. [25], p. 354). The probability of
violation for a randomly chosen pure two-qubit state can
then be determined by numerical integration to be, respec-
tively, about 5.3% for RIM and 10.1% for ROM.
Conclusion and other directions.—We introduced the

idea of performing a Bell experiment using randomly
chosen measurement bases, with the aim of demonstrating
nonclassical correlations in the absence of a shared refer-
ence frame. We applied this idea to the n-partite GHZ state

TABLE I. Probability of finding a nonclassical correlation
from the n-partite GHZ state for the scenario where each party
is allowed to perform binary projective measurements in two
randomly chosen measurement bases. The number of data points
(run) used to compute the probabilities for RIM (ROM) is
included in the third (fifth) row of the table.

n 2 3 4 5 6

RIM 28.3185% 74.6899% 94.2380% 99.5926% 99.97%
run
105

5000 500 25 0.8

ROM 41.2982% 96.2073% 99.9757% 99.9999% 100.00%
run
105

5000 5000 500 25 0.8
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and showed that the probability of finding a nonclassical
correlation rapidly tends to unity as the number of parties
increases. Naively, one might have expected that this
chance would diminish with increasing n, due to the in-
creasing chance of misalignment of the experimenters’
measurement bases (or, alternatively, by considering the
fragility of the GHZ state to dephasing). Our results clearly
show otherwise. We have thus shown that without a shared
reference frame, a Bell inequality violation can still be
demonstrated reliably without resorting to complicated
state preparation or consumption of expensive quantum
resources. This, of course, significantly reduces the tech-
nical requirements for experimentally violating a Bell in-
equality, performing quantum key distribution based on
such violations, or establishing large-scale quantum
networks.

Our work also represents the first systematic study of the
set of correlation derivable from a quantum resource such
as the n-partite GHZ state. Specifically, our results indi-
cate that the correlations obtained by performing projec-
tive measurements on this quantum resource are almost
ubiquitously nonclassical (this can be rigorously quantified
by considering a volume measure in the space of GHZ-
attainable-correlations induced by RIM and ROM). Given
that measurements and the resulting correlations play an
important role in many quantum information processing
tasks, the tools and ideas that we have introduced here,
suitably generalized, may shed some light on the origin of
the power of other quantum resources such as the highly
entangled cluster state. In particular, they may add new
insights to the computational power of correlations re-
cently discussed in Ref. [26].

The results presented here motivate several additional
research directions. First, one may attempt to determine a
new intuition for our result of increasing probability of
violation with the number of parties n, by relating this
probability to the average magnitude of the MABK viola-
tion, which also increases with n [21]. Second, for many
quantum information processing tasks, violation of the
inequalities considered in the present work may not be
sufficient, as other types of multipartite entanglement (per-
haps different from that of the GHZ state) may be required
that are not quantified by these inequalities. To this end, it
will be interesting to investigate the efficiency of random
measurements against inequalities that detect other, more
general types of multipartite entanglement [27]. Finally,
for real-world applications of these results, a critical issue
is to determine how robust they are against decoherence.
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