
Gaudio et al. Reply: In our Letter [1], we investigated the
origin of the rounded behavior of the nonclassical rota-
tional inertia as function of temperature and its dependence
on the 3He impurities. We generalized the theory of
Kotsubo and Williams [2], initially proposed for superfluid
(SF) 4He films adsorbed in porous materials, to the specific
case of unannealed 4He solid. In particular, we proposed
that a two-dimensional Berezinskii-Kosterlitz-Thouless
(BKT) SF transition occurs on the premelted liquid film
on the grain boundaries, where the dimension of the grain
provides a finite size scale for the BKT transition, account-
ing therefore for the rounded temperature behavior. To
illustrate these effects, we concentrated in our Letter on a
single grain model, whereas the role of the random network
of the 2D superfluid surfaces of the grain boundaries,
beyond the scopes of our Letter, was not explicitly
addressed.

In their Comment [3], Yucesoy et al., using numerical
quantum Monte Carlo simulations, address the issue of
how a three-dimensional (3D) grain surface connectivity
can modify these results. They first consider an XY model
on a single two-dimensional (2D) plaquette of size l to
simulate the physics of a single finite size grain. Their
numerical results agree very nicely with our analytical
approach, with a rounded behavior of the SF density as a
function of temperature. As a test, they also consider the
XY model on a cubic N � N � N three-dimensional sys-
tem, where they, not surprisingly, find a sharp 3D XY
transition. To simulate the connectivity network of the
grain surface, they finally consider the XY model on the
facets of N � N � N cubes, the size of each being l (see
Fig. 1). They introduce some degree of disorder by ran-
domly eliminating 70% of the plaquettes. By means of
their numerical simulations, they find that the superfluid
density in this latter geometry displays a sharp 3D-like
transition. They claim that this latter geometry would
mimic a realistic 3D network of connected 2D grain sur-
faces, so they conclude that the results from a single finite
size grain do not apply in realistic systems where the
connectivity between the grain surfaces provides a three-
dimensional environment.

We have, however, strong perplexities about the repre-
sentative of their chosen geometry to simulate realistic
systems. We note, for instance, that, in the absence of
disorder, the geometry considered in the Comment can
be viewed as obtained by the superposition of a periodical
array ofN planes in the x direction, as well as in the y and z
directions (see Fig. 1). The main drawbacks of such ge-
ometry are (i) the size of each cube (meant to simulate a
grain) is fixed, (ii) the angle between different plaquettes is
also fixed, and (iii) the coupling J connecting different
plaquettes is the same as within each plaquette. All of these
features favor the formation of 3D coherent correlations.
Note also that in this geometry, the length l does not act
anymore as finite size scale for the 2D BKT in the plane

which is limited instead by the scale l� N. The additional
randomness introduced in the Comment (random removing
of 70% of plaquettes) is quite unphysical (since it assumes
the disappearing of some grain surfaces) and in any case
does not affect the above features (i)–(iii), enforcing a 3D
character. In our opinion, a more realistic description of the
3D network of two-dimensional superfluid grain surfaces
should take into account instead the randomness of the size
of the grains and of the orientation of the grain boundaries.
Such effects question thus the assumptions (i)–(ii) without
affecting the three dimensionality of the network. Also, the
Josephson coupling between different grains in realistic
systems is expected to be smaller than on the grain surface.
This effect should be taken into account by using a smaller
constant J0 < J at the plaquette edge than within a pla-
quette, preserving finite size effects. Further investigations,
with more realistic geometries and realistic kinds of dis-
order, are thus needed in our opinion to assess this issue.
We suggest, for instance, to investigate similar effects on
the 3D network defined by the surfaces of Voronoi cells of
a random distribution of points with given density.
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FIG. 1. 3D network of 2D plaquette in the absence of disorder,
as chosen by Yucesoy et al. in the Comment.

PRL 104, 049602 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

29 JANUARY 2010

0031-9007=10=104(4)=049602(1) 049602-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.049602

