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Leaf venation is a pervasive example of a complex biological network, endowing leaves with a

transport system and mechanical resilience. Transport networks optimized for efficiency have been shown

to be trees, i.e., loopless. However, dicotyledon leaf venation has a large number of closed loops, which

are functional and able to transport fluid in the event of damage to any vein, including the primary veins.

Inspired by leaf venation, we study two possible reasons for the existence of a high density of loops in

transport networks: resilience to damage and fluctuations in load. In the first case, we seek the optimal

transport network in the presence of random damage by averaging over damage to each link. In the second

case, we seek the network that optimizes transport when the load is sparsely distributed: at any given time

most sinks are closed. We find that both criteria lead to the presence of loops in the optimum state.
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Networks optimized for various transport characteristics
are of evident importance in urban infrastructure and tech-
nology; more subtly, they are also of great importance in
various natural settings, such as river networks [1], or in
biological settings where the network has been subjected to
natural selection [2]. The question of convexity is central in
the study of such networks; for many objective functions,
the optimal network can be shown to be topologically a
tree, a loopless graph such that cutting any bond discon-
nects it into two pieces. For example, in the case of a
resistor network where the cost of a conductance C be-
tween two nodes is proportional to C� and the total cost of
the network is bounded, the network which optimizes
energy dissipation will be a uniform ‘‘sheet’’ when � >
1, or a tree when � < 1, with a phase-transition-like change
at � ¼ 1 [3–6]. The networks for � < 1 are related to
optimal channel networks (OCNs) [1], widely used to
study and model river networks with large basins; the
extensively studied case [7] is mostly devoted to arbores-
cent distribution structures.

Yet everyone is familiar with many natural and man
made networks that, rather than being treelike, exhibit a
number of loops. The vasculature of two-dimensional ani-
mal tissues such as the retina [8,9] and dicotyledon leaf
venation are two of many natural networks which contain
loops, in fact recursively nested sets of loops [10]. Other
such examples include the structural veins of some insect
wings or the structural weblike bracing of certain
Gorgonian corals such as sea fans, as well as the network
of rivers at deltas or lowlands. Almost all artificial distri-
bution networks contain loops, most evidently the streets in
city plans (see supplemental material [18]).

Several studies have concentrated on the morphogenesis
of leaf venation patterns, trying to elucidate the mecha-
nisms by which a dense set of loops is created [11–14]. In
this work we take a complementary point of view, namely,

we shall want to understand why such patterns were chosen
by evolution in the first place. We make the ad hoc as-
sumption that evolution of such patterns was not strongly
constrained by choice of morphogenetic mechanism. As
with any other natural system, we do not know a priori
what (if any) is the functional being optimized in these
examples. However, we can discard as a candidate the
functional analyzed in [3], as for no value of � is the
optimal network similar to the ones observed. We thus
need to consider other optimizing functionals that reflect
aspects of physiology critical for survival.
First, we will consider resilience to damage. Leaves are

under constant attack, from the elements as well as patho-
gens, insects, and herbivores [15]. Were the leaf vascular
network treelike, damage to any vein would result in the
death of all the leaf section downstream from that vein, and
hence entire leaf sectors would be observed to be dead.
However, this is not the case, as illustrated in the experi-
ment in Fig. 1: the loops in the venation permit flow to be
routed around any injury to any veins, including the main
vein. We thus seek to optimize leaf function in the presence
of damage to the veins. Optimization under damage to
veins implies, virtually by definition, the formation of
loops. Qualitative predictions of the necessity of loops in
networks susceptible to damage have been made in the past
(see, e.g., [15,16], and references therein). Robustness to
damage can be conferred by a (topologically minimum)
ring joining the outermost nodes, as discussed in [15], and
can be enhanced by having more than one primary veins
emanating from the base of the leaf [16]. Here, instead, we
show that optimality under robustness to damage requires
metric redundancy realized by hierarchical recursively
nested loops.
Second, the studies that found that a tree topology

optimizes transport were carried out for the case of opti-
mization under a spatially and temporally constant load.
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Yet in the case of, for instance, brain vasculature, we know
that the system is sensitively optimized to deliver changing
fluxes under constantly varying load (as seen in functional
magnetic resonance imaging). Indeed, there is a similar
phenomenon in the case of leaves, called stomatal patchi-
ness. Stomatal patchiness refers to heterogeneous stomatal
aperture across the surface of the leaf blade (and thus water
evaporation and photosynthetic activity [17]). Stomatal
patchiness is currently believed to be a possible evolu-
tionary adaptation to regulate water flux under conditions
of stress. A spatially and temporally irregular driving force
in the form of stomatal patchiness would thus be contrary

to the assumptions of the uniform load models described in
Refs. [3,4]. Because of the nonlinearity of the optimization
cost function, spatiotemporal irregularities can potentially
alter the optima. In particular, the proofs of looplessness in
Refs. [3–5] all rely rather directly and essentially on con-
stant fluxes. Therefore we also seek to optimize leaf func-
tion under conditions of varying load. Surprisingly, we find
that optimization under a varying load leads to the forma-
tion of dense, recursively looped structures.
We now define the two models more precisely. We

consider, following [3,4], a network consisting of nodes
k, joined by conductances Ckj; we shall denote by hj; ki the
set of nodes j adjacent to a given node k. A conductance C
is assumed to ‘‘cost’’ an amount C�, and the total cost of
the network to be constant and equal to 1
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X

hj;ki
C�
kj ¼ 1: (1)

At any given node k there are currents Ikj through the edges

of the graph, whose sum are net currents I i which corre-
spond either to evaporation through stomata or water in-
jection at the stem. We stipulate that I1 ¼ N � 1 (where
k ¼ 1 is the stem) and Ik ¼ �1 for k > 1. The currents are
driven by differences in the potential Vi at the nodes, as
Ikj ¼ CkjðVk � VjÞ:

X

hj;ki
CkjðVk � VjÞ ¼ Ik (2)

an equation whose inversion yields the Vk and conse-
quently the Ikj. Finally, the functional being optimized is

the total power dissipation

P ¼ 1

2
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X
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CkjðVk � VjÞ2: (3)

Minimization under the alternative measure of average
voltage drop P ¼ � 1

N�1

P
kVk [15] can be shown to be

equivalent to minimization of the total power dissipation
(see supplemental material [18]).
In the first model (robustness to damage), we compute

the power dissipated when one of the links (e.g., ab) is
broken: Cab

kj ¼ Ckjð1� �ak�bj � �aj�bkÞ. For each set of

conductivities with a cut bond we can compute Vab
k and

subsequently obtain the dissipation Pab. The total dissipa-
tion is defined as

R ¼ X

ðabÞ
Pab (4)

which is the functional being minimized. Note that if
breaking (ab) disconnects the graph, then Pab becomes
infinite. Thus, finiteness of R requires that breaking any
one bond should not disconnect the graph. This can be
satisfied by adding a perimeter ring of conductances (no
matter how small) to the terminal nodes of any tree. If the

FIG. 1 (color). Top: Flow routed around an injury in a lemon
leaf. A circular cut (black circle) was made on the main vein of a
lemon leaf; fluorescein (bright green or yellow) was injected post
injury at the stem (lower left, below the field of view), and was
observed to flow through the vein network around the injury,
closing a number of loops and eventually reaching the tip of the
leaf. The two secondary veins immediately ‘‘downstream’’ from
the injury (i.e., the two attached immediately to the right of the
black circle) are thus supporting reversed flow from the tertiary
veins back to the primary vein. A full HD movie is available in
the supplementary material [18]. Bottom: Stomatal patchiness
visualized by chlorophyll autofluorescence (455 nm stimulation,
broad red emission) in a lemon leaf. Entire domains of the leaf
show all their stomata either closed (bright) or open (dark).
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tree had T terminal nodes, then this would result in T facets
in the graph. Many leaves have such a rim of veins [15].
However, this only guarantees finiteness; to actually mini-
mize the value of R more loops than that are required, as
shown in the left column of Fig. 2.

In our second model, we consider fluctuating load by
introducing a single moving sink. We define Ia

k ¼ �0k �
�ak, i.e., a single source at the stem and a single sink at
node a. This induces new potentials Va

k , power loss P
a and

similarly to the cut bond model:

F ¼ X

a

Pa: (5)

Optima of this functional are shown in Fig. 2, right column.
The model in [3–5] was already computationally costly

enough that it could only be optimized through relaxation
techniques, or Monte Carlo methods that involved search-

ing the space of tree graphs. The extensions presented in
this Letter cannot be optimized by such a Monte Carlo
method as the optima are not trees. We alternatively use an
annealing method; however, much like any method that
does not use exhaustive search, the minima found cannot
be guaranteed to be global minima. The method required

the evaluation of the inverse of an N � N matrix Ĝ that
depends on the conductivity. For computational efficiency
in the cut bond model, rather than inverting a different
matrix for each of the terms in the ab sum, we perturba-

tively expand Ĝ and show that it can be evaluated using
only the inverse of the original matrix of the full network
and a sparse matrix multiplication, dramatically speeding
up the evaluation. To simplify the calculation in the fluc-
tuating load model we similarly use the sparse nature of the
Ia. Details are given in the supplementary material [18].
Similarly to the results found in [3–5] the cut bond

model exhibits a transition from the � < 1 hierarchical
structure case, to the � > 1 case, where the network is a
uniform sheet. However, unlike the simple tree model, the
veins anastomose and we observe the formation of nested
loops, reminiscent of the ones seen in real leaves. Indeed,
evolutionary trends in vascular plants indicate a tendency
of the vascular system to develop redundancy and hier-
archical network patterns [15].
As shown in Fig. 3, where we plot the ratio of the energy

of the network to the energy of a network with a constant
conductivity distribution and same � (normalized dissipa-
tion), the results for the bond case are very similar to the
uniform load case. They both exhibit a cusp at � ¼ 1. The
situation is drastically different for the moving sink model,
where the phase transition (seen by the discontinuous
change in slope of the curve at � ¼ 1) has been replaced
by a crossover shown in the inset of Fig. 3.
Although we observe hierarchical loops in both models,

the quantitative aspects of the networks are very different.
The voltage drop profile, though qualitatively very similar
between the tree (not shown) and cut bond model is dras-
tically different between the cut bond and fluctuating sink
model. For large � the voltage drop Vp across the leaf blade

is controlled by the Euclidean distance from the leaf base
both for broken bonds and moving sinks. However, as �
decreases in the broken bond model, Vp depends primarily

on the distance from the nearest main vein and not the
network source. In all cases the average Vp of the moving

sink model was much larger than the average Vp of the

broken bond model for the same �. For � ’ 0:1–0:8 the
average valency of both models ranged from 3–4, in agree-
ment with [19], but the distribution of valencies was very
different between the two models. Moreover, whereas for
the broken bond model fractal-like features of the network
persist until � < 1, for the sink model fractality disappears
for � > 0:5 [20].
To conclude, it is widely yet incorrectly stated that many

natural distribution networks, such as animal vasculature
or tree leaves, are treelike [21,22]; even the most cursory of

FIG. 2 (color). Loops as a result of optimizing under damage
to links (left column) and under a fluctuating load (right col-
umn). In all plots the vein thickness (shown in black) is propor-
tional to Cð�þ1=2Þ=3. The background color of each network
represents the pressure drop relative to the network source,
normalized by the mean pressure drop of a network optimized
for the tree model with the same �.
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visual inspections rapidly refutes such statements. Two
fundamental misconceptions underlie these statements.
First, an unstated yet universal implication is that the trees
are hierarchically ordered, i.e., as they are inevitably de-
picted as regular binary trees, one gets the impression of an
ordered branching from the top level, first order to second
and subsequent orders. Second, the venous and arterial
trees are described as touching each other strictly at the
level of the ‘‘terminal nodes’’ of each tree, the capillaries,
by implication the only member of the hierarchy where it is
ambiguous whether it is a vein or an artery. This descrip-
tion is disproved by looking at real leaves or images of, for
instance, the retina, where it is evident that venous capil-
laries of all orders impinge directly on primary arteries and
vice versa, and that, moreover, veins of any order branch
directly from higher-order veins of much larger order [8,9].
This topological disorder permits circulation in case of
obstacles, but may also, as our results above suggest,
confer superior deliverance to fluctuating loads.

We are deeply indebted to Raymond Raad, Steffen
Bohn, and Yves Couder; we would like to acknowledge
help from Keith Mott.

Note added.—Recently, we became aware of the work of
Corson [23].
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FIG. 3 (color online). Normalized network dissipation vs �.
Red (or gray) line: homogeneous load, blue (or dark gray) line:
cut bond, black line: fluctuating sink. The number of network
nodes was N ¼ 949. Inset: Close-up of the crossover for the
fluctuating sink case. Solid line: medium size network (N ¼
949), dashed line: small network (N ¼ 285), dotted line: big
network (N ¼ 1589).
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