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For the problem of efficiently supplying material to a spatial region from a single source, we present a

simple scaling argument based on branching network volume minimization that identifies limits to the

scaling of sink density. We discuss implications for two fundamental and unresolved problems in

organismal biology and geomorphology: how basal metabolism scales with body size for homeotherms

and the scaling of drainage basin shape on eroding landscapes.
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In both natural and man-made systems, branching net-
works universally facilitate the essential task of supplying
material from a central source to a widely distributed sink
population. Branching networks also underlie the comple-
mentary process of collecting material from many sources
at a single sink. Such networks typically exhibit structural
self-similarity over many orders of magnitude: river net-
works drain continents [1–3], arterial and venal networks
move blood between the macroscopic heart and micro-
scopic capillaries [4], and trees and plants orient leaves
in space taking on the roles of both structure and
transportation.

We address the following questions regarding supply
networks. (1) What is the minimum network volume re-
quired to continually supply material from a source to a
population of sinks in some spatial region�? (2) How does
this optimal solution scale if � is rescaled allometrically?
(For convenience, we use the language of distribution, i.e.,
a single source supplying many sinks.) Our approach is
inspired by that of Banavar et al. [5,6] who sought to derive
scaling properties of optimal transportation networks in
isometrically growing regions based on a flow rate argu-
ment; Banavar et al.’s approach followed the seminal work
of West et al. [7] who suggested supply networks were key
to understanding the metabolic limitations of organisms,
and focused on network impedance minimization (see
[8,9]). In contrast to this previous work, our treatment is
explicitly geometric. We also accommodate four other key
features: the ambient dimension, allometrically growing
regions, variable sink density, and varying speed of mate-
rial transportation.

We consider the problem of network supply for a general
class of d-dimensional spatial regions in a D � d dimen-
sional space. Each region � has volume V and overall
dimensions L1 � L2 � � � � � Ld [see Fig. 1(a)]. We allow
these length scales to scale as Li / V�i, creating families
of allometrically similar regions. For isometric growth, all
dimensions scale uniformly meaning �i ¼ 1=d, while for
allometric growth, we must have at least one of the f�ig
being different. For the general case of allometry, we

choose an ordering of f�ig such that the length scales are
arranged from most dominant to least dominant: �max ¼
�1 � � � � � �d.
We assume that isolated sinks are located throughout a

contiguous spatial region � (volume V) which contains a

single source located at ~x ¼ ~0. We allow sink density to
follow �� �0ðVÞð1þ ak ~xkÞ�� where a is fixed, � � 0,
and k ~xk is the distance from the source. When the exponent
� ¼ 0, � is constant throughout the region (as for capil-
laries in organisms), but remains a function of the region’s

b)

a)

c)

FIG. 1. (a) We consider families of d-dimensional spatial
regions that scale allometrically with Li / V�i, and exist in a
D-dimensional space where D � d. For the d ¼ D ¼ 2 example
shown, �max ¼ �1 > �2, and L1 grows faster than L2. We
require that each spatial region is star-convex, i.e., from at least
one point all other points are directly observable, and the single
source must be located at any one of these central points.
(b) Distribution (or collection) networks can be thought of as a
superposition of virtual vessels. In the example shown, the
source (circle) supplies material to the three sinks (squares).
(c) Allowing virtual vessels to expand as they move away from
the source captures a potential decrease in speed in material flow.
For scaling of branching network form to be affected, the radius
r of a virtual vessel must scale with vessel length s (measured
from the sink) as s��.
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overall volume V. While decreasing sink density (� > 0)
does not reflect the reality of biological organisms, it is not
an unreasonable postulate for other supply collection sys-
tems, and may be of use in modeling transportation to and
from cities. Last, we assume each sink draws approxi-
mately the same amount of material from the source per
unit time. The material traveling from the source to a
specific sink takes up a certain volume of the network,
and while this volume of material may not be coherent
away from the sink, we can nevertheless imagine separate
‘‘virtual vessels’’ transporting material from the source to
the sinks [see Fig. 1(b)]. (Only in the smallest, outer
branches will virtual vessels coincide with physical ves-
sels.) Material flow rate will then vary according to
changes in the cross sections of these vessels.

We take the cross-sectional area of these virtual ves-
sels to be bounded by a fixed upper limit at the sink [see
Fig. 1(c)]. We allow that material speed may increase with
proximity to the source, meaning these virtual vessels may
taper. If the radius decreases as rsinkð1þ csÞ��, where s is
the length of the vessel as measured from the sink and c is a
constant, then the volume of a virtual vessel grows as
vvessel � s1�2� for 0 � � < 1=2 and vvessel � s0 for � �
1=2 (we can therefore focus on � ¼ 1=2 to represent the
latter case). We ignore all other possible taperings since
only an algebraic decay relationship between vessel radius
and length will affect the scaling of overall network vol-
ume Vnet. If, however, there is a minimum virtual vessel
radius (i.e., a limit to material speed) then vessel volume
must grow linearly with length: vvessel � s1.

The overall network volume Vnet is the sum of all virtual
vessel volumes, and is evidently minimized when virtual
vessels travel directly from the source to each sink—the
extreme case of a star network. While real, large-scale
distribution networks are branched, many examples are
close to this limit in terms of path length [10]. Minimal
network volume therefore grows as

minVnet /
Z
�d;DðVÞ

�0ð1þ ak ~xkÞ��k ~xk1�2�d ~x; (1)

where 0 � � � 1=2, and we have indicated a spatial region
� scaled to have volume V by �d;DðVÞ. The integral’s

leading order behavior gives the optimal scaling of Vnet

with V:

minVnet � �0V
1þ�maxð1�2���Þ; (2)

where again �0 ¼ �0ðVÞ. When � � 1=2, minVnet �
�0V

1���max . The scaling of minimal network volume with
V is thus governed by sink density �, vessel scaling, and
the dominant length scale through �max, and we first ad-
dress the role of the latter. Since for isometric scaling,
�max ¼ 1=d, whereas for allometric scaling, �max > 1=d,
we immediately see that from a scaling perspective, iso-
metrically growing regions require less network volume
than allometrically growing ones, and are in this sense

more efficiently supplied. Efficiency also increases with
the dimension d since network volume scales more closely
with overall volume (�max ¼ 1=d decreases). Furthermore,
shapes that scale allometrically effectively function as
lower-dimensional, isometrically scaling objects and are
therefore less efficiently supplied (the equivalent spatial
dimension is 1=�max).
We see from Eq. (2) that network volume straightfor-

wardly increases linearly with �0. How �0 in turn scales
with V depends on the specific system, and, in particular,
on whether D ¼ d or D> d. We now specialize our gen-
eral result for the two cases of blood networks and river
networks.
Blood networks [D ¼ d ¼ 3].—If material is costly, as

in the case of blood, then we expect that isometric scaling
(�max ¼ 1=d) to be attained by evolution. We take � ¼ 0
because capillaries (the sinks) are distributed relatively
uniformly. Furthermore, since blood velocity in both the
aorta and in capillaries changes little with V during resting
states [7,11], we have � ¼ 0. Lastly, it is well observed that
the volume of blood scales linearly with organismal vol-
ume [12], Vnet / V. (In general, for D ¼ d, we must have
Vnet / V as otherwise we would have the nonsensical
limits of Vnet=V ! 0 or 1 as V ! 1.) Since we already

have that Vnet / �0V
1þ1=d, the additional constraint Vnet /

V means sink density must decrease as volume increases:

�0 / V�1=d, where �0 for resting organisms now refers to
the effective or active sink density (organisms at rest have a
substantial proportion of inactive capillaries that are called
into use during higher rates of overall activity [13]).
It follows that Prest, the average rate of energy use in a

resting state (basal power), which is proportional to the

number of active sinks in �, can at best scale as Prest ¼
�V / V�1=dV / Mðd�1Þ=d, where we have assumed that V
scales as body mass M. For three-dimensional organisms,
we therefore have

Prest / M2=3: (3)

If organism shapes obey instead an allometric scaling then
power scales more slowly as Prest / M1��max with �max >
1=3, contrary to McMahon’s theory of elastic similarity
[14].
We note that in detail, blood networks do not appear to

have universal forms [15], showing substantial variation in
branching structure across and within species; we therefore
argue that it is only the system level that matters and that
branching networks need only approximate star networks.
Crucially, the scaling law of Eq. (3) balances with the

standard one based on organismal surface area S. For
homeothermic organisms, who must constantly balance
heat loss to maintain a steady internal temperature, we
have that Prest / S (due primarily to radiation but also

convection [16]). For isometrically scaling organisms, S /
M2=3, and this is well supported empirically [12].
Moreover, it is easy to show that only isometrically grow-
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ing shapes balance Prest since the (d� 1)-dimensional
surface area of a growing region � scales as V1��min , and
therefore �max ¼ �min ¼ 1=d. Thus, the most efficient
network in terms of minimal volume is also the one that
precisely balances radiative heat loss.

Our seemingly reasonable result, which was empirically
observed over a century ago by Rubner [17], runs counter

to nearly 80 years of reports that Prest / M3=4. Kleiber [18]
first suggested the exponent might be 3=4 in the 1930s after
measuring a value of 0.76 for 13 mammals (his practical
reason for choosing 3=4 was to simplify slide rule calcu-
lations [19]). In the decades following, a general but not
universal consensus on a ‘‘3=4-law of metabolism’’ was
reached [7,20,21]. The issue remains controversial both
theoretically [8,22–24] and empirically: some recent sta-
tistical analyses have shown that a 2=3 exponent is well
supported by large data sets for warm-blooded organisms
(both birds and mammals) [8,25–27] while others have
found evidence in favor of a 3=4 exponent or no simple
scaling relationship [8,28–31]; and for cold-blooded or-
ganisms, plants, and invertebrates, a much broader range of
exponent values has been measured empirically and pre-
dicted from theory [32–35].

Perhaps the most important aspect of the 2=3 versus 3=4
debate is that, from an optimization point of view, the
lower the scaling of resting metabolism the better. A scal-

ing of M3=4 (or any power exceeding 2=3) would point to
either a fundamental scaling limitation for warm-blooded
organisms or to the existence of a cost other than volume
minimization, such as impedance [7]. Where a higher
exponent would be desirable is in the scaling of maximal
power Pmax, which is unsustainable and depends on stored
energy, and indeed, Pmax scales almost linearly with
mass [33].

River networks [D ¼ 3> d ¼ 2].—The patterns of
large-scale river networks have long drawn scientific inter-
est, naturally from hydrologists and geomorphologists
[1,2], but also from statistical physicists seeking evidence
of universality in nature [36–39]. In our framework, river
networks are collection systems: water flows from many
sources (channel heads [40]) to a single sink, the outlet of
the network’s main stream. The description of river net-
work geometry has often focused on Hack’s law [41] which
relates the area a of a drainage basin to the length l of its
longest stream: l / ah. Various studies of small-scale ba-
sins, starting with Hack’s initial work [2,41], have sug-
gested that the ‘‘Hack exponent’’ h exceeds 1=2, indicating
an anomalous allometric scaling of basin shape wherein
large basins are relatively long and thin compared to
smaller ones (provided that the longest stream exhibits
no or sufficiently weak fractality). Indeed, for sufficiently
small, homogeneous landscapes, there may be a universal
value of h > 1=2, yet to be fully understood theoretically
[36,38,39,42]. However, the most comprehensive data sets
robustly show that h ¼ 1=2 for large-scale networks; in

particular, Montgomery and Dietrich [40] found that over
12 orders of magnitude variation in basin area, l / a0:49

(their data set mixed both Euclidean overall basin length L
and main stream length l; generally, l / L� with � very
close to, if not equal to, unity).
The empirical observation that h ¼ 1=2 accords with

our result that with respect to network volume minimiza-
tion, isometrically growing regions are most efficient; with
our optimality argument, this becomes a stronger statement
than appealing only to dimensional analysis.
Beyond isometry, we have the scaling of network vol-

ume to consider. We now take �0 to be constant and again
set � ¼ 0, meaning we assume that, when averaged over
time, rain falls approximately uniformly across a land-
scape. We also assume � ¼ 0 for the continental-scale
networks we examine below. In contrast to the case of
cardiovascular networks, the constraint that network vol-
ume must scale as overall volume (or basin area a) cannot

apply to river networks, since Eq. (2) now gives Vnet /
�0V

1þ1=d / V3=2 ¼ a3=2. The reason is simple: river net-
works lie on a d ¼ 2 dimensional surface embedded in
D ¼ 3 dimensions, and the presence of a third dimension
allows the total water in the network to grow faster than if
the embedding dimension was D ¼ 2.

In Fig. 2 we show that Vnet scales as a3=2 for four
continental-scale networks: the Mississippi, the Amazon,
the Congo, and the Nile [43]. The scaling holds over 6 and
10 orders of magnitude in area and network volume,
respectively, indicating that self-similar drainage basins
most efficiently drain large-scale landscapes.
While we have argued that the optimal scaling corre-

sponds to the case of h ¼ 1=2, we can directly see this
connection arising from known scaling laws of river net-
works [36,37]. As put forward in [39], network volume

6 7 8 9 10 11 12 13
8
9

10
11
12
13
14
15
16
17
18
19
20

log
10

 area a [m2]

lo
g 10

 w
at

er
 v

ol
um

e 
V

 [
m

3 ] Amazon
Mississippi
Congo
Nile

FIG. 2 (color online). The scaling of network volume versus
basin area for four continental-scale river networks. The solid
line indicates a scaling of 3=2. Network volume is estimated for
an idealized steady-state, uniform rainfall condition normalized
such that Vnet ¼

P
ijaij, where aij is the area of the basin

draining into the ijth cell on a coarse-grained version of a
landscape, and the data are binned in log space [5].
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scales with basin area as Vnet / a1þh, showing that for the
optimal case, we indeed have h ¼ 1=2.

We acknowledge that a stronger optimization may be at
work for eroding landscapes. In particular, previous theo-
retical analyses suggest that in terms of energy minimiza-
tion, landscapes may reach local, dynamically accessible
minima [38,39], though sufficient self-averaging inherent
in larger landscapes may render such minima indistin-
guishable from the global one. Nevertheless, our argument
and data analysis show that for large-scale networks on
heterogeneous landscapes, far exceeding the typical corre-
lation length for precipitation events, a kind of optimal
volume minimization is achieved.

With suitable modifications, our findings may be found
relevant to other systems, in particular to plants (when seen
as two connected branching networks), as well as to the
scaling limits of episodic movement such as the transpor-
tation of people in and out of city centers. (Assuming
constant flow as we do here, then a decay of sink density
with � ¼ 1 follows for growing cities where transportation
remains unchanged with city size.) While we have demon-
strated that empirical evidence supports a geometric opti-
mality for two kinds of large-scale natural branching
networks, not all systems will be optimal or may be opti-
mized. For example, if allometric scaling of organismal
shape is demanded by some other constraints (e.g., due to
the effects of gravity), then blood volume will be forced to
obey a poorer scaling with overall volume [9].
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I. Rodŕ�guez-Iturbe, Phys. Rev. E 53, 1510 (1996).
[37] P. S. Dodds and D.H. Rothman, Phys. Rev. E 59, 4865

(1999).
[38] J. R. Banavar, F. Colaiori, A. Flammini, A. Maritan, and

A. Rinaldo, J. Stat. Phys. 104, 1 (2001).
[39] A. Maritan, R. Rigon, J. R. Banavar, and A. Rinaldo,

Geophys. Res. Lett. 29, 1508 (2002).
[40] D. R. Montgomery and W. E. Dietrich, Science 255, 826

(1992).
[41] J. T. Hack, U.S. Geol. Surv. Prof. Pap. 294-B, 45 (1957).
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