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We explore emergent effects of multidimensionality of the free energy landscape on single-molecule

kinetics under constant force. The proposed minimal model reveals the existence of a spectrum of unusual

scenarios for the force-dependent lifetime, all of which are shown to occur on a free energy landscape with

a single transition state. We present an analytical solution that governs single-molecule responses to a

constant force and relates them to microscopic parameters of the system.
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Single-molecule manipulation methods are making it
possible to directly measure forces generated during key
processes in the living cell. These methods have been
applied to an expanding variety of fundamental biological
problems, ranging from the mechanical properties of bio-
polymers and the strength of ligand-receptor interactions to
the dynamics associated with enzyme catalysis [1,2]. In
particular, force-clamp experiments allow monitoring of
the response of a single biomolecule held under a constant
stretching force. A chosen value of force is maintained
through a continuous readjustment of the molecular exten-
sion [3] or via the passive force clamp [4]. From a time
series of the extension, the time scale to rupture, or the
lifetime �ðFÞ, at each value of force is obtained. The �ðFÞ
data can then be interpreted in microscopic terms by fitting
to a theoretical model.

Force-induced biomolecular rupture involves a vast
number of degrees of freedom both of the molecule being
pulled and of the surroundings. To make it a tractable
problem, one usually assumes that the instantaneous con-
figuration of the molecule can be fully identified by a
single variable—pulling coordinate x, e.g., the end-to-end
distance of a biopolymer as it is being stretched. This
assumption is justified when changes in x represent the
slowest mode of the dissociation process while all other
degrees of freedom rapidly attain Boltzman equlibrium.
The slow motion is treated as a Brownian motion on the
potential of mean force along the reaction coordinate x
with the effect of other coordinates ‘‘packed’’ into the
thermal bath. The lifetime �ðFÞ in the resulting 1D de-
scription is determined by diffusive crossing of an activa-
tion barrier tilted under the applied force, and can be
calculated from Kramers theory [5–7].

Limitations of such a 1D description are apparent. If
there is another degree of freedom (call it Q) which is as
slow as or slower than x, the reduction of the multidimen-
sional dynamics to a 1D process along x is no longer
possible. Indeed, Hyeon and Thirumalai showed [8] that
the extension (x) in the force-quench refolding of RNA
hairpins is largely determined by local conformational

changes in the dihedral angles (Q), indicating that x alone
may not be an adequate reaction coordinate. Similarly, the
extension of a protein held under a stretching force is likely
to be correlated with the fraction Q of the native amino
acid contacts [9], and the redistribution of Q not only can
be as slow as changes in x but also can in fact represent the
rate-limiting step of the protein unfolding. A multidimen-
sional approach is then required to describe molecular
rupture, with the free energy Gðx;QÞ now being a function
of at least two coordinates [10].
In this Letter we explore, in the framework of a minimal

model, the range of responses of a single macromolecule or
a molecular complex to constant pulling force when the
dynamics of a degree of freedom (Q) other than the mo-
lecular extension (x) is essential for the rupture kinetics.
We reveal the existence of a rich spectrum of qualitatively
distinct scenarios for the force-dependent lifetime �ðFÞ,
among which is a ‘‘rollover’’: a seemingly counterintuitive
effect of strengthening the system by low force followed by
an accelerated rupture at higher forces. While nomono-
tonic force dependence of lifetime has been observed in
experiments on catch-slip adhesion bonds in single cells
[11] and in simulations of protein unfolding [12,13], it has
been largely attributed to multiple coexisting pathways
each selected in a different force range [12–17]. Here we
demonstrate that a dynamics as simple as that on a single
dissociation pathway [13] is sufficient to realize nonmono-
tonic lifetimes. Because of natural movement of the tran-
sition state with force, no additional deformation energy
term [18] needs to be introduced artificially. Our model
leads to an analytical solution that describes a variety of
force dependencies of the lifetime in terms of microscopic
properties of the system.
Free energy of the system is the sum of the intrinsic free

energy, G0ðx;QÞ, and the mechanical work (�Fx) of the
external constant force F acting in the direction of x. As is
typical for this class of problems, G0ðx;QÞ has a well (the
bound state) separated from the free state by a high barrier
that has the minimum height at the saddle point (Fig. 1). A
minimal model which incorporates the effect of the slow
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coordinateQ on the rupture kinetics under constant force is
[19,20]

Gðx;QÞ ¼ G0ðQÞ þ 1
2kðQÞ½x� x0ðQÞ�2 � Fx: (1)

In the absence of force, the x ¼ const free energy curves
are assumed to resolve the bound state and the transition
state in an interval of values of x that includes the coor-
dinate of the transition state, x\ (Fig. 1). The Q ¼ const
profiles of the free energy are harmonic with the curvature
kðQÞ and the minimum at x0ðQÞ. kðQÞ is a measure of the
statistical dispersion in the values of the molecular exten-
sion at a given Q and can be thought of as a molecular
stiffness, while x0ðQÞ is the most probable value of the
extension at a given Q in the absence of force. To preserve
the generality of the analysis, we do not restrict ourselves
with any explicit functional forms of G0ðQÞ, kðQÞ, and
x0ðQÞ until the end [Eq. (8)] of this Letter.

Under the assumption that the lifetime of the system is
controlled by the diffusion of the probability density of the
molecular configurations across a region of the saddle
(Fig. 1), �ðFÞ can be found from the Langer’s multidimen-
sional generalization [21] of Kramers theory [5]:

�ðFÞ ¼ 2��þðFÞ
�j detH\ðFÞj
detH[ðFÞ

�
1=2

exp½��GzðFÞ�; (2)

where �GzðFÞ ¼ Gðx\ðFÞ; Q\ðFÞÞ�Gðx[ðFÞ; Q[ðFÞÞ is
the height of the activation barrier at force F, �þðFÞ is the
unique positive root of detð�DH\ðFÞ þ ��1þ IÞ ¼ 0, D is
the diffusion matrix, H\=[ðFÞ is the Hessian matrix of

Gðx;QÞ at the transition state/bound state, and I is the
unit matrix. Coordinates ðx[ðFÞ; Q[ðFÞÞ of the bound state
and ðx\ðFÞ; Q\ðFÞÞ of the transition state are the solutions
of f@Gðx;QÞ=@Q ¼ 0; @Gðx; QÞ=@x ¼ 0g. As a result of
the reshaping of the free energy landscape in Eq. (1) by
the force, the bound and transition states change their
Q positions according to

@Q[=\
@F

¼ 1

�[=\ðFÞ
�
@x0
@Q

� F

k2ðQÞ
@k

@Q

���������Q[=\ðFÞ
; (3)

where �[=\ðFÞ are the second Q derivatives of Gðx;QÞ
along the dissociation pathway, evaluated in the bound
ð[Þ=transition ( \ ) states (see [22] for details).
Because the major impact of force on the lifetime in

Eq. (2) stems from the exponential factor, the qualitative
behavior of �ðFÞ can be accessed based on the effect of the
force on the barrier height �GzðFÞ. We find [22] that the
rate at which the barrier height of the free energy surface in
Eq. (1) changes with the force F is given by

@�Gz=@F ¼ �½x\ðFÞ � x[ðFÞ�: (4)

If the extension in the transition state, x\ðFÞ, exceeds that
in the bound state, x[ðFÞ, the rate of change in the barrier
height in Eq. (4) is negative indicating that the force short-
ens the lifetime. If the extension is the same in the two
states, Eq. (4) indicates no change to the barrier, the life-
time is essentially insensitive to force. If rupture mecha-
nism requires that two residues approach each other in
order to attain the transition state, stretching force applied
at these residues will result in an increase of the barrier
height [the right-hand side of Eq. (4) is positive] and thus in
an extended lifetime. If two or more of the above scenarios
are realized each in a different range of the applied force,
the resulting molecular response will be a nonmonotonic
lifetime �ðFÞ, a phenomenon not expected in a conven-
tional 1D description.
The difference in the extension in the transition state and

in the bound state that appears in Eq. (4) can be expressed
explicitly in terms of the two characteristics of the model in
Eq. (1), x0ðQÞ and kðQÞ:
x\ðFÞ � x[ðFÞ ¼ x0ðQ\ðFÞÞ� x0ðQ[ðFÞÞ

þ F½k�1ðQ\ðFÞÞ� k�1ðQ[ðFÞÞ�: (5)

Based on Eqs. (4) and (5), we conclude that the barrier
height, and thus the lifetime �ðFÞ, is affected by the force
when the bound state and the transition state are charac-
terized by different values of x0 and/or k. Below we dissect
possible scenarios for �ðFÞ of the system in Eq. (1). Our
approach is based on tracking changes, caused by the force,
in the relative position of the bound and transition states as
governed by Eq. (3). These changes determine the evolu-
tion of the barrier height with force, Eqs. (4) and (5),
which, in turn, determines �ðFÞ, Eq. (2). This approach
eliminates the need for assumptions of explicit functional
forms of x0ðQÞ and kðQÞ, thereby enhancing the generality
of conclusions. For details of analysis, see [22].
First, we note that when neither x0 nor k vary withQ, the

barrier in Eqs. (4) and (5) is insensitive to force and hence
rupture is not affected by pulling. Next we explore possible
scenarios for �ðFÞ when only one of the two characteristics
of the model, x0 or k, varies with Q. As summarized in
Fig. 2, the range of scenarios even under such restricting
conditions is remarkably diverse [see Figs. 2(b) and 2(d)]
and includes monotonic as well as nonmonotonic profiles
of �ðFÞ, depending on the nature of x0ðQÞ [Fig. 2(a)] or of
kðQÞ [Fig. 2(c)]. Unlike the conventional 1D description

FIG. 1 (color online). Intrinsic free energy G0ðx;QÞ has a
bound state at (x[, Q[) separated from the free state by a high
barrier at (x\, Q\).
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with x being the reaction coordinate, the monotonic �ðFÞ is
now governed not only by the dynamics along x but also by
that along Q.

Let us turn to the general case when the states corre-
sponding to different values of Q are characterized by
different values of both the most probable extension
x0ðQÞ and the molecular stiffness kðQÞ. The evolution of
the barrier height with force [Eqs. (4) and (5)] is now
determined by the interplay between two factors, one being
the difference in x0 in the bound and transition states, and
another being the difference in k in these two states. This
interplay can potentially result in unlimited number of
scenarios for �ðFÞ, including those with alternating phases
of increase and decrease. In particular, the difference
x\ðFÞ � x[ðFÞ in Eq. (4) is now allowed to change sign
from negative to positive at a force F�, resulting into the
rollover in �ðFÞ (Fig. 3). The rollover can be realized when
the transition state possesses two properties as opposed to
the bound state: (i) short molecular extension and (ii) soft
structure. Because of (i), stretching force will counteract
the intrinsic mechanism of attaining the transition state; as
a result, low force will slow down the rupture. On the other
hand, a sufficiently high force will distort the pliable [due
to (ii)] transition state such that rupture through a distorted
barrier may eventually become as (or more) efficient as
rupture through the unperturbed barrier. The two factors
are balanced at F ¼ F� where the rollover in the lifetime
occurs. The described mechanism is principally different
from a discrete switch between two coexisting pathways,
as there is only one pathway in the model in Eq. (1). This

study thus points out to an alternative mechanism of the
rollover (Fig. 3) and other nonmonotonic scenarios (Fig. 4)
in the lifetime. For a comparison of different models, see
[22].
Rollover in �ðFÞ may be observed in the forced unfold-

ing of a protein or a nucleic acid which is of a prolate shape
in its folded state [23]: pulling on the ends of the polar
diameter will tend to separate the residues that otherwise
would not likely be that far apart in the transition state.
Nonmonotonic �ðFÞ is expected in pulling experiments on
knotted proteins and on ligand-receptor complexes with
the ligand behaving as a ‘‘hook’’ [24,25] since pulling will

FIG. 3 (color online). Rollover in the lifetime from theory and
simulations. Snapshots of the free energy landscape at zero force
and at high force show distortion of the dissociation path in the
(x, Q) plane. See [22] for parameter values.

FIG. 4 (color online). Scenarios for the force-dependent life-
time that arise from the model in Eq. (1) when only one of the
two characteristics of the model, the extension x0 or the stiffness
k, varies with Q. Lines: theory; symbols: simulations. Profiles in
black diamonds, green squares, and gray triangles are due to the
Q dependence of x0 [k ¼ const; compare with predictions in
Fig. 2(b)]. Profiles in red triangles and blue circles are due to the
Q dependence of k [x0 ¼ const; compare with Fig. 2(d)]. All the
profiles are reproduced by analytical theory in Eqs. (7) and (8)
(solid lines). See [22] for parameter values.

FIG. 2 (color online). Force-dependent lifetimes �ðFÞ of the
system in Eq. (1). (a) Profiles of x0ðQÞ (solid black, dashed red,
dotted blue) resulting in distinct scenarios for �ðFÞ at k ¼ const.
As force increases, the extrema Q[ and Q\ move (see arrows)
according to Eq. (3). None of the other types of x0ðQÞ (e.g., solid
gray lines) lead to a scenario for �ðFÞ qualitatively different from
those in (b). (b) �ðFÞ scenarios at k ¼ const corresponding to
each of the x0ðQÞ curves in (a). Inset: Rate of change of the
barrier height with force at k ¼ const, corresponding to each of
the x0ðQÞ curves in (a). (c) and (d) The same as (a) and (b) but for
x0 ¼ const.
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oppose unknotting or unhooking at least in some range of
forces.

When Q is the slowest degree of freedom among all
others, including the extension x, the 2D model in Eq. (1)
can be reduced to a picture of diffusive barrier crossing on
a potential of mean force along the reaction coordinate Q,
which can be calculated by averaging Eq. (1) over x as
GðQÞ ¼ ���1 ln

R
exp½��Gðx; QÞ�dx [20]:

GðQÞ ¼ G0ðQÞ � Fx0ðQÞ � F2

2kðQÞ þ
1

2�
ln
�kðQÞ
2�

: (6)

If the stiffnesses of the bound and the transition states are
comparable, the contribution of the logarithmic term to
rupture kinetics can be neglected. We find that, for a broad
class of models with G0ðQÞ being a linear-cubic function
[6] and x0ðQÞ and 1=kðQÞ each allowed to be any poly-
nomial up to second degree in Q, the lifetime on the
potential of mean force in Eq. (6) can be calculated from
Kramers theory as

�ðFÞ ¼ �0=�qðFÞ exp½���Gzð1��q3ðFÞÞ�: (7)

Here �qðFÞ � �QðFÞ=�Qz is the distance along Q be-
tween bound and transition states normalized by its zero
force value, and �0 ¼ ��Qz2=ð3DQ��G

zÞ expð��GzÞ is
the lifetime at zero force.

To illustrate the utility of Eq. (7), consider G0ðQÞ ¼
2�Gz
�Qz3 ½Q��Qz=2�3 � 3�Gz

2�Qz ½Q� �Qz=2�, along with

x0ðQÞ ¼ �Q2 �Q �xz
�Qz ½1þ � �Qz2

�xz � þ �xz and kðQÞ ¼
k0[

1��kz=k0[
1�ðQ=�QzÞ�kz=k0[ . Here �xz is the distance along x be-

tween the transition and bound states and �kz is the
difference in molecular stiffness in the bound (k0[) and
transition states at F ¼ 0. The nature of x0ðQÞ is specified
by �: x0ðQÞ is monotonic at j�j< j��j [Fig. 2(a), solid
black and dotted blue] and nonmonotonic at j�j> j��j
[Fig. 2(a), dashed red], where �� ¼ �xz=�Qz2. With
this choice of model functions, �qðFÞ in Eq. (7) is

�q2ðFÞ ¼ 1� 2�xz

3�Gz F

�
�
�kz=ð3�Gzk02[ Þ
1� �kz=k0[

� �2�Qz4

9�Gz2

�
F2: (8)

We establish the quality of our results through compari-
son with Brownian dynamics simulations of molecular
rupture on the 2D free energy landscape in Eq. (1).
Figures 3 and 4 demonstrate the agreement between the
analytical theory in Eqs. (7) and (8) (solid lines) and
simulations (symbols). The analytical solution also agrees
with the lifetime obtained by numerical evaluation of the
2D Langer formula, Eq. (2); the two results become practi-
cally identical at high diffusion anisotropy, Dx � DQ.

In summary, this study revealed the existence of unusual
scenarios for the force-dependent lifetime in single-
molecule dynamics at constant force. The scenarios occur

for dynamics as simple as that on a 2D free energy land-
scape with a single transition state. Further advances in
single-molecule techniques should enable discrimination
between the mechanism of rupture involving a switch
between two competing barriers and the mechanism where
a single barrier is continuously altered with force.
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