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We propose a tomographic method to reconstruct the optical properties of a highly scattering medium

from incoherent acousto-optic measurements. The method is based on the solution to an inverse problem

for the diffusion equation and makes use of the principle of interior control of boundary measurements by

an external wave field.
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The acousto-optic effect is a phenomenon in which the
optical properties of a material medium are modified due to
interaction with acoustic radiation. Brillouin scattering
from density fluctuations in a fluid [1] and the ultrasonic
modulation of multiply scattered light in a randommedium
[2] are familiar examples of this effect. It is well known
that the scattered optical field carries information about the
medium. This principle has been exploited to develop a
hybrid imaging modality, known as acousto-optic imaging
(AOI), which combines the spectroscopic sensitivity of
optical methods with the spatial resolution of ultrasonic
imaging [3–17]. AOI holds great promise as a tool to probe
hidden structure inside of highly scattering media, such as
clouds, paint, and biological tissue—a problem which is of
both fundamental interest and considerable applied impor-
tance [18]. For instance, in biomedical applications, optical
methods provide unique capabilities to assess physiologi-
cal function including blood volume and tissue oxygen-
ation [19–21]. At the same time, such methods have the
molecular selectivity to map gene expression and other
markers of biomolecular activity.

In a typical AOI experiment, a highly scattering medium
is illuminated by a coherent optical source and the result-
ing speckle pattern is registered by a detector. A focused
ultrasound beam is then introduced and the speckle modu-
lation is recorded as the beam’s focus is scanned through-
out the medium. Since the scatterers in the medium are
displaced by the acoustic wave, the scattered light under-
goes a frequency shift which permits the localization of the
resulting so-called tagged photons to the volume contain-
ing the focus. The intensity images that are obtained in this
manner convey information about the medium. However,
they are not tomographic, nor are they quantitatively re-
lated to the optical properties of the medium.

In this Letter we consider the inverse scattering problem
that arises in AOI. We show that it is possible to reconstruct
tomographic images of the optical properties of a medium
from incoherent measurements of multiply scattered light
that is modulated by a standing acoustic wave. The prin-

ciple advantages of the proposed method compared to
conventional methods for imaging with diffuse light are
twofold. (i) The resolution of reconstructed images is, in
principle, much higher than in diffuse optical tomography
(DOT). In particular, the inverse problem of AOI is well
posed and the image resolution is controlled by the acous-
tic wavelength. In contrast, the inverse scattering problem
for diffuse waves is severely ill posed, which leads to the
relatively low resolution of DOT [22,23]. Physically, the
improvement in resolution in AOI can be understood to be
a consequence of controlling an internal degree of freedom
of the scattering medium (the density of scatterers) by
means of an external wave field. (ii) Neither interferomet-
ric measurements of tagged photons nor the use of a
focused acoustic wave field is required. This considerably
simplifies the experimental realization of the method.
We begin by developing a simple model for the acousto-

optic effect in a random medium. The model accounts both
for Brillouin scattering and multiple scattering of light due
to density fluctuations and is formulated within the frame-
work of radiative transport theory. That is, we do not
account for coherent effects in multiple light scattering
[24]. Consider the propagation of an acoustic wave in a
fluid suspension of particles that scatter and absorb light. If
the amplitude of the pressure wave is sufficiently small,
each particle will oscillate about its local equilibrium
position. We may thus regard the suspension as consisting
of independent particles whose number density is spatially
modulated due to the presence of the acoustic wave. If we
focus our attention on a single neutrally buoyant spherical
particle, its velocity u obeys the equation of motion

�
du

dt
¼ 4�a�

V
ðv� uÞ � rp; (1)

where we have not accounted for hydrodynamic interac-
tions between the particles. Here p denotes the pressure, v
is the velocity field in the fluid, a is the radius of the
particle, � is its mass density, V ¼ 4�a3=3, and � is the
viscosity of the suspension. Note that the neglect of hydro-
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dynamic interactions means that, apart from a transient, the
particle moves with the fluid. Consider a standing time-
harmonic plane wave of frequency ! with p ¼
A cosð!tÞ cosðk � rþ ’Þ, where A is the amplitude of the
wave, k is its wave vector, and ’ is the phase [25]. For
simplicity, we have assumed that the speed of sound cs is
constant with k ¼ !=cs. The corresponding velocity field
obeys the linearized Euler equation

�
@v

@t
¼ �rp: (2)

The oscillatory solution to (1) is given by

u ¼ A

�!
sinð!tÞ sinðk � rþ ’Þk; (3)

and, as a consequence, we obtain for the position of the
particle

R ¼ R0 � A

�!2
cosð!tÞ sinðk � rþ ’Þk; (4)

where R0 is the equilibrium position.
Let R1; . . . ;RN denote the positions of the particles in

the fluid. Then, since each particle moves independently,
we find that

R i ¼R0i� A

�!2
cosð!tÞ sinðk � rþ’Þk; i¼ 1; . . . ;N:

(5)

The number density of particles is defined by % ¼P
i�ðr�RiðtÞÞ. Expanding the delta function to first order

in the small parameter � ¼ A cosð!tÞ=ð�c2sÞ and using (5),
we find that % is given by

%ðrÞ ¼ %0ðrÞ½1þ � cosðk � rþ ’Þ�; (6)

where %0ðrÞ ¼
P

i�ðr�R0iÞ is the equilibrium number
density of the particles.

The propagation of multiply scattered light is taken to be
described by the diffusion approximation to the radiative
transport equation. The electromagnetic energy density u
obeys the diffusion equation

�r �
�

Dn2r
�
u

n2

��

þ c�au ¼ 0 in �; (7)

uþ ‘
@u

@n
¼ �ðr� r0Þ on @�; (8)

where n is the index of refraction of the fluid, �a is the
absorption coefficient, ‘ is the extrapolation length, and
r0 2 @� is the position of a unit-amplitude point source
[26,27]. The diffusion coefficient D is defined by

D ¼ c

3½�a þ ð1� gÞ�s� ; (9)

where �s is the scattering coefficient and g is the anisot-
ropy of scattering. The scattering and absorption coeffi-
cients are related to the number density by �s ¼ %�s and
�a ¼ %�a, where �s and �a denote the scattering and

absorption cross sections of the particles. We thus see that
the optical properties of the medium are modulated by the
presence of the acoustic wave. In addition, we account for
variations in the index of refraction due to Brillouin scat-
tering according to

nðrÞ ¼ n0½1þ �� cosðk � rþ ’Þ�; (10)

where n0 is the index of refraction in the absence of the
acoustic wave and � ¼ ð"� 1Þ=½3ð"þ 2Þ� is the elasto-
optical constant, with " being the dielectric constant of the
fluid [1]. Note that � � 0:3 in water. Making use of the
above definitions, we see that (7) becomes

�r �D�rc � þ 	�c � ¼ 0 in �; (11)

c � þ ‘
@c �

@n
¼ g on @�; (12)

where c � ¼ u=n2, g ¼ n2�ðr� r0Þ, and the modified ab-
sorption and diffusion coefficients are defined by 	� ¼
cn2�a and D� ¼ n2D. Using (6) and (10), we find that
to first order in �

	�ðrÞ ¼ 	0ðrÞ½1þ �ð2�þ 1Þ cosðk � rþ ’Þ�; (13)

D�ðrÞ ¼ D0ðrÞ½1þ �ð2�� 1Þ cosðk � rþ ’Þ�; (14)

where 	0 and D0 are the absorption and diffusion coeffi-
cients in the absence of the acoustic wave. The solution to
(11) is given by

c �ðrÞ ¼ c 0ðrÞ � �
Z

d3r0½ð2�þ 1ÞGðr; r0Þc 0ðr0Þ	0ðr0Þ
þ ð2�� 1Þrr0Gðr; r0Þ � rc 0ðr0ÞD0ðr0Þ�
� cosðk � r0 þ ’Þ þOð�2Þ; (15)

where the Green function G satisfies

�r �D0ðrÞrGðr; r0Þ þ 	0ðrÞGðr; r0Þ ¼ �ðr� r0Þ (16)

and obeys homogeneous boundary conditions of the form
(8) with zero right-hand side. We note that c � is propor-
tional to the intensity that is measured by a point detector.
We can estimate the magnitude of the acousto-optic

signal from the above analysis. Consider a homogeneous
volume of absorption 	 and diffusion coefficient D. It
follows from (17) and (18) that the relative change in
intensity due to the presence of an acoustic plane wave is
of the order �I=I � �½1þ ð
LÞ2� expð�
LÞ, where L is

the source-detector separation and 
 ¼ ffiffiffiffiffiffiffiffiffiffi
	=D

p
. Choosing

typical values of the above parameters in tissue, 
 ¼
1 cm�1, L ¼ 1 cm, and � ¼ 10�3, we find that �I=I �
10�3, which is expected to be observable [28]. We note
�I=I would be significantly smaller for the case of a
focused beam, assuming equivalent incident power.
The inverse problem of AOI is to reconstruct 	0 and D0

from c �. To proceed, let us define� ¼ @c =@�j�¼0, which
can be determined from measurements carried out in the
presence and absence of the acoustic wave. Making use of
(15) we obtain
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�ðrÞ ¼
Z

Kðr; r0Þ cosðk � r0 þ ’Þd3r0; (17)

where

Kðr; r0Þ ¼ ½ð2�þ 1ÞGðr; r0Þc 0ðr0Þ	0ðr0Þ
þ ð2�� 1Þrr0Gðr; r0Þ � rc 0ðr0ÞD0ðr0Þ�: (18)

Suppose we fix the positions of the optical source and
detector and vary the wave vector k and the phase ’.
Evidently, it is then possible to recover Kðr; r0Þ by inver-
sion of a Fourier transform. That is,

Kðr; r0Þ ¼
Z d3k

ð2�Þ3 e
�ik�r0 ½�ðr;k; 0Þ þ i�ðr;k; 3�=2Þ�;

(19)

where the dependence of � on k and ’ has been made
explicit. For simplicity, suppose that	0 ¼ 0. Noting thatG
and c 0 depend upon D0, it follows from (18) that

D0 ¼ A½D0�; (20)

where the nonlinear operator A is defined by

A ½D0�ðr0Þ ¼ Kðr; r0Þ
ð2�� 1Þrr0Gðr; r0Þ � rc 0ðr0Þ : (21)

Thus D0 is a fixed point of A, which can be found
iteratively according to

Dðnþ1Þ
0 ¼ A½DðnÞ

0 �; n ¼ 1; 2; . . . ; (22)

where DðnÞ
0 ! D0 as n ! 1, provided that A is contract-

ing. We note that at each step it is necessary to compute the
Green function G, which depends upon the current esti-
mate of D0. We further note that measurements from two
independent sources are required to reconstruct both 	0

and D0.
The above result provides an iterative solution to the

inverse problem of AOI. We now describe a direct method
to solve the inverse problem. We begin by observing that�
obeys the equation

�r �D0r�þ ½ð2�� 1Þr �D0rc 0 � ð2�þ 1Þ	0c 0�
� cosðk � rþ ’Þ þ 	0� ¼ 0 in �; (23)

�þ ‘
@�

@n
¼ 0 on @�; (24)

which follows from (11), (13), and (14). Next, we multiply
(23) by c 0 and (11) by �, take the difference of the two
equations that result, and integrate over �. After integrat-
ing by parts and employing the boundary conditions (8)
and (12), we obtain the identity

�ðk; ’Þ ¼
Z

�
d3r½ð2�� 1ÞD0ðrc 0Þ2 þ ð2�þ 1Þ	0c

2
0�

� cosðk � rþ ’Þ; (25)

where the surface term � is defined by the formula

�ðk;’Þ¼1

‘
D0ðr0Þ½�ðr0Þþð2��1Þc 0ðr0Þcosðk �r0þ’Þ�

�ð2��1Þ
‘

Z

@�
d2rD0c

2
0 cosðk �rþ’Þ: (26)

Since � and c are known on @� from measurements, the
function � can be determined. Provided that � is known
for a sufficient number of values of k and ’, we observe
that the Fourier transform of

fðrÞ ¼ ð2�� 1ÞD0ðrÞðrc 0ðrÞÞ2 þ ð2�þ 1Þ	0ðrÞc 2
0ðrÞ
(27)

is known from available measurements. We first consider
the case where 	0 ¼ 0. We then find that

D0ðrÞ ¼ fðrÞ
ð2�� 1Þðrc 0ðrÞÞ2

: (28)

Making use of (7), we see that c 0 obeys the nonlinear
equation

r �
�

f

ðrc 0Þ2
rc 0

�

¼ 0 in �; (29)

c 0 þ ‘
@c 0

@n
¼ g on @�: (30)

This equation admits a solution if f is smooth and bounded
from below by a positive constant. Once c 0 is found by
solving (29), we can recover the diffusion coefficient D0

from (28).
Next we consider the general problem of recovering

both 	0 and D0. In this case, we require data from two
sources g1 and g2, as specified by the boundary condition
(12). We denote the corresponding solutions to (11) by c 1

and c 2. We also define

fkðrÞ ¼ ð2�� 1ÞD0ðrÞðrc kðrÞÞ2 þ ð2�þ 1Þ	0ðrÞc 2
kðrÞ;

k ¼ 1; 2: (31)

Solving for 	0 and D0 we find

	0ðrÞ ¼ f1ðrÞðrc 2ðrÞÞ2 � f2ðrÞðrc 1ðrÞÞ2
ð2�þ 1Þ½c 2

1ðrÞðrc 2ðrÞÞ2 � c 2
2ðrÞðrc 1ðrÞÞ2�

;

(32)

D0ðrÞ ¼ f2ðrÞc 2
1ðrÞ � f1ðrÞc 2

2ðrÞ
ð2�� 1Þ½c 2

1ðrÞðrc 2ðrÞÞ2 � c 2
2ðrÞðrc 1ðrÞÞ2�

:

(33)

The c k are then obtained by solving the system of non-
linear equations

�r �D0rc k þ 	0c k ¼ 0 in �; (34)

c k þ ‘
@c k

@n
¼ gk on @�; (35)

where	0 andD0 are defined by (32) and (33), respectively,
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and k ¼ 1; 2. Once the c k are found, we can then recover
	0 and D0 from (32) and (33), which yields the solution to
the nonlinear inverse problem of AOI.

Several remarks on the above results are necessary.
(i) We observe that the inverse problem of AOI is expected
to be well posed since (19) yields a band limited approxi-
mation to the kernel K by an inverse Fourier transform. In
contrast, the linear inverse problem of DOT is severely ill
posed, requiring the inversion of a Laplace transform, a
problem which has logarithmic stability [29,30]. This ill-
posedness is responsible for the relatively low resolution of
images in DOT. Characterizing the stability and ill-
posedness of the inverse problem for AOI, along with
developing numerical methods for (34), will be the subject
of future research. (ii) The nonlinear equation (29) is of the
form r � ðfjrc jp�2rc Þ ¼ 0, with p ¼ 0. The case p ¼
0 was also addressed in [31,32] in a different physical
context and solved numerically using an iterative algo-
rithm similar to the fixed point algorithm presented in
(22). The case p ¼ 1 was studied in [33], where unique-
ness results and numerical methods were described. See
also related work in [34]. (iii) The diffusion equation (7) is
valid when the energy density varies slowly on the scale of
the transport mean free path. This condition breaks down
when the acoustic wavelength is sufficiently small. It
would thus be of some interest to extend the theory we
have developed to the transport regime. (iv) In many
applications of interest, the speed of sound is not constant.
It is an open problem to generalize our results to this case,
although for known, sufficiently localized fluctuations in
the sound speed, it is possible to replace the standard
Fourier transform by a modified Fourier transform [35].

In conclusion, we have developed a tomographic
method for acousto-optic imaging. Neither interferometric
measurements of tagged photons nor the use of a focused
ultrasound beam is required. Our approach is based on the
solution to an inverse problem for the diffusion equation
with interior control of boundary measurements.

We are grateful to Shari Moskow for valuable discus-
sions. G. B. was supported in part by NSF Grants
No. DMS-0554097 and No. DMS-0804696. J. C. S. was
supported by the NSF Grant No. DMS-0554100 and the
USAFOSR Grant No. FA9550-07-1-0096.

*gb2030@columbia.edu
†schotland@seas.upenn.edu

[1] M. Born and E. Wolf, Principles of Optics (Cambridge
University Press, Cambridge, England, 1999).

[2] W. Leutz and G. Maret, Physica (Amsterdam) 204B, 14
(1995).

[3] F. A. Marks, H.W. Tomlinson, and G.W. Brooksby, Proc.
SPIE Int. Soc. Opt. Eng. 1888, 500 (1993).

[4] M. Kempe, M. Larionov, D. Zaslavsky, and A. Z. Genack,
J. Opt. Soc. Am. 14, 1151 (1997).

[5] E. Granot, A. Lev, Z. Kotler, B. G. Sfez, and H.
Taitelbaum, J. Opt. Soc. Am. A 18, 1962 (2001).

[6] L. H. Wang, S. L. Jacques, and X. Zhao, Opt. Lett. 20, 629
(1995).

[7] L. H. Wang and Q. Shen, Opt. Lett. 23, 561 (1998).
[8] L.-H. V. Wang and G. Ku, Opt. Lett. 23, 975 (1998).
[9] G. Yao, S. Jiao, and L.-H.V. Wang, Opt. Lett. 25, 734

(2000).
[10] J. Li and L.-H. V. Wang, Appl. Opt. 41, 2079 (2002).
[11] J. Li, G. Ku, and L.-H. V. Wang, Appl. Opt. 41, 6030

(2002).
[12] S. Leveque, A. C. Boccara, M. Lebec, and H. Saint-

Jalmes, Opt. Lett. 24, 181 (1999).
[13] S. Leveque-Fort, J. Selb, L. Pottier, and A. C. Boccara,

Opt. Commun. 196, 127 (2001).
[14] M. Atlan, B. C. Forget, F. Ramaz, A. C. Boccara, and M.

Gross, Opt. Lett. 30, 1360 (2005).
[15] M. Gross, M. Lesaffre, F. Ramaz, P. Delaye, G. Roosen,

and A. C. Boccara, Eur. Phys. J. E 28, 173 (2009).
[16] A. Lev, Z. Kotler, and B.G. Sfez, Opt. Lett. 25, 378

(2000).
[17] A. Lev and B.G. Sfez, Opt. Lett. 27, 473 (2002).
[18] M. C.W. van Rossum and Th.M. Nieuwenhuizen, Rev.

Mod. Phys. 71, 313 (1999).
[19] V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder,

Nat. Biotechnol. 23, 313 (2005).
[20] J. Ripoll, R. Schulz, and V. Ntziachristos, Phys. Rev. Lett.

91, 103901 (2003).
[21] J. Ripoll and V. Ntziachristos, Phys. Rev. Lett. 96, 173903

(2006).
[22] S. R. Arridge, Inverse Probl. 15, R41 (1999).
[23] G. Bal, Inverse Probl. 25, 053001 (2009).
[24] In this sense, our model differs from those described in

L.-H. V. Wang, Phys. Rev. Lett. 87, 043903 (2001);
L.-H. V. Wang, Opt. Lett. 26, 1191 (2001); S. Sakadzic
and L.-H. V. Wang, Phys. Rev. E 66, 026603 (2002).These
works are principally concerned with the mechanism of
coherent light scattering in acousto-optics.

[25] We do not consider directly how such a wave is to be
generated. Evidently, an appropriately chosen boundary
condition for the acoustic wave equation will, in principle,
solve the problem.

[26] J. Tualle and E. Tenet, Opt. Commun. 228, 33 (2003).
[27] G. Bal, J. Opt. Soc. Am. A 23, 1639 (2006).
[28] To estimate �, we chose � ¼ 1 g cm�3, cs ¼

1:5� 105 cm s�1, and A ¼ 106 Pa.
[29] V. Markel and J. C. Schotland, Phys. Rev. E 70, 056616

(2004).
[30] C. Epstein and J. C. Schotland, SIAM Rev. 50, 504

(2008).
[31] H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and

M. Fink, SIAM J. Appl. Math. 68, 1557 (2008).
[32] A. Gebauer and O. Scherzer, SIAM J. Appl. Math. 69, 565

(2008).
[33] A. Nachman, A. Tamasan, and A. Timonov, Inverse Probl.

23, 2551 (2007); 25, 035014 (2009).
[34] P. Kuchment and L. Kunyansky, arXiv:0901.2552v1.
[35] M. E. Taylor, Partial Differential Equations II: Qualitative

Studies of Linear Equations (Springer, New York, 1997),
Chap. 9.

PRL 104, 043902 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

29 JANUARY 2010

043902-4


