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We present a robust and fast laser cooling scheme suitable for trapped ions, atoms, or cantilevers. Based
on quantum interference, generated by a special laser configuration, it is able to rapidly cool the system
such that the final phonon occupation vanishes to zeroth order in the Lamb-Dicke parameter in contrast to
existing cooling schemes. Furthermore, it is robust under conditions of fluctuating laser intensity and
frequency, thus making it a viable candidate for experimental applications.
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Introduction.—Laser cooling is a crucial ingredient for
probing quantum properties of matter [1]. It is a key factor
in a wide variety of experiments ranging from Bose-
Einstein condensates and quantum computing to quantum
simulation with atoms and ions. Variants of cooling
schemes range from Doppler cooling for free particles
[2] and its partner, sideband cooling for bound particles
[3], to dark-state cooling schemes for free [4] and bound
particles [5].

At present, sideband cooling is the method of choice for
trapped ions. It is a necessary requirement for efficient
cooling that motional sidebands with frequency v can be
resolved, i.e., the tunable effective linewidth [6] of the
optical transition I'.;s << v. Cooling is then achieved by
the red sideband transition which excites the atom elec-
tronically while at the same time annihilating a phonon to
ensure energy conservation. This transition rate must be
higher than that on the carrier and blue sideband transitions
as these can heat the system either through recoil after
spontaneous decay (carrier) or coherent generation of a
phonon (blue sideband). Addressing the red sideband tran-
sition requires that the Rabi frequency () of the laser
satisfies {} < ». One method to further suppress the car-
rier and blue sideband transitions employs destructive
interference exhibited, for example, in dark states [5].
For this reason, electromagnetically induced transparency
(EIT) [7] has become an inspiration for a variety of pro-
posed laser cooling schemes for trapped ions such as EIT
cooling [8], Stark-shift cooling [9], and some others [10].
In EIT cooling, interference eliminates the carrier transi-
tion to improve cooling performance while in the Stark-
shift scheme this is achieved by a carefully tuned Rabi
frequency [11].

In EIT cooling [8] the existence of a dark state allows
final temperatures below 7l'/ky. This is achieved in an
electronic three level scheme subject to Raman lasers with
strong blue single-photon detuning that couple both the
ground state and a metastable state to an excited dissipative
state. Among the dressed states of the system is one dark
state that cancels the carrier transition. Well chosen pa-
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rameters can center the red sideband transition under a
peak of the Fano-like absorption spectrum, while con-
straining the blue sideband to a region with negligible
absorption, thus achieving low final temperatures. The final
state of the system is then of the form

P = (Idark)darkl @ Faln)ul) + 0, (1)

where |dark) refers to the electronic degrees of freedom
(d.o.f.) and |n) are the number states of the motional d.o.f.
where the final mean phonon number is of order (I'/4|A[)?
[8].

In Stark-shift cooling [9], on the other hand, one laser
drives transitions between the ground and a metastable
state and another pair of resonant Raman lasers couples a
superposition of both to the excited state. This first laser
generates Rabi oscillations between the dark state and the
orthogonal bright state. If the coupling strength is correctly
tuned, the oscillations will also involve neighboring me-
chanical levels so that states |dark)|n) and |bright)|ln — 1)
are coupled while carrier transitions are eliminated. Both,
EIT and Stark-shift cooling achieve a final temperature that
is, in leading order, independent of the Lamb-Dicke pa-
rameter 7).

Here we demonstrate that the two schemes can be com-
bined, leading to a new interference effect that is then
exploited to achieve a qualitative and quantitative improve-
ment of the cooling dynamics and its stability, thus out-
performing its constituent schemes. The new scheme,
robust cooling, is based on the existence of a joint dark
state in EIT and Stark-shift cooling. This in turn allows us
to tune the quantum interference to cancel both the carrier
and the blue sideband transitions, and hence heating. As a
result the final state is of the form

p = |dark)(dark| ® [0)(0] + O(n?), 2)

with a final phonon number that vanishes in leading order
in the Lamb-Dicke parameter. To the best of our knowl-
edge this is the first scheme that is able to achieve this for
trapped particles.
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Remarkably, we will also demonstrate that our scheme
exhibits a significant improvement with regard to the
stability under fluctuating laser intensities. This implies
that it remains robust under general experimental condi-
tions, making it a promising candidate for rapid cooling of
ions and atoms and also for achieving ground state cooling
of cantilevers where limited Q factors make fast and robust
cooling essential.

Description of proposal.—The combined scheme, as
presented in Fig. 1, involves a trapped ion with an internal
electronic structure made up of a ground state and a
metastable state |g;) and |g,) and an excited dissipative
state |e). A harmonic well models the trap potential. It is
characterized by its equally spaced levels |n) representing
the Fock state of n phonons and the creation and annihila-
tion operators b and b'. Stark-shift and EIT coolings can
be regarded as particular instances of this scheme when
n4s — 0 and Q5 — 0, respectively.

The quantum theory of laser cooling of trapped particles
was developed in [12,13] and we will follow the notation in
[13]. Expanding the Hamiltonian to first order in the Lamb-
Dicke parameters, yields three contributions. First the trap
potential and the internal d.o.f.:

Hy = vbTh — Ale)el, 3)

where A, the detuning of both lasers, is chosen to be equal.
Next, the interaction of the lasers with the ion due to the
EIT part and the Stark-shift part, respectively:
Hgrr = Q4 (0% + 0%7°) + 9, Q4 (057 — 057) (b + bt),
“)

Hssy = Qpoi'® + npQpof (b + b'), (5)

with o™ =(Im)(n| +H.c.) and o™ =(—ilm)}n|+
H.c.).

The physics of the scheme can be understood by extend-
ing the analysis of the steady state Eq. (2) to the next order
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FIG. 1 (color online). A three-level electronic structure made
up of |g,) and |g,) and an excited state |e) which dissipates
energy at rate I'. The lower levels are coupled to |e) by a pair of
Raman beams under a detuning A whose Rabi frequencies are
Q4 and which interact mechanically with the ion with Lamb-
Dicke parameters 14 of opposite sign (this may be achieved,
e.g., by counterpropagating beams). The |g;) are directly coupled
by a Rabi frequency )z and Lamb-Dicke parameter 7.

in the Lamb-Dicke parameter. Consider

|W) = [)10) — inal+H)I1) + O(n?), (6)
where |+) = %(lgﬁ + |g,)), n accounts for both Lamb-

Dicke parameters, and we omit normalization. Under the
effect of the EIT couplings [Eq. (4)] both terms of the
superposition interfere destructively, and as a result [V)
remains invariant. However, |¥) is not invariant under the
free Hamiltonian Eq. (3), which introduces a relative phase
between the two components. For suitably tuned parame-
ters, the Stark-shift coupling part [Eq. (5)] cancels this
relative phase. Hence |W) will be an invariant dark state
as it does not suffer any spontaneous emission losses either.
This is achieved when

(v
G ”

From an experimental point of view, it is worth noting that
this resonance condition is characterized by the ratio of the
Lamb-Dicke parameters. These can be set up at the begin-
ning of the experiment to a high precision.
Losses from the excited level are incorporated in the
master equation
dp

N = —ih[Hy + Hgrr + Hssp, pl + L, (8)

by a Liouvillian £¢

d .. _ -
'£ P = Z ’)/e,iza-i,epe,ia-e,i
i=gl,g2

T POce T TeepPs (9)

where o, = |j)kl and p,; = 3 ['| dxe™*ei*peikeir,

After expansion up to second order in the Lamb-Dicke
parameter and adiabatic elimination of the internal d.o.f.,
we find the rate equation:

AP~ [+ DA Al

+n(Aspl " = ALpiD] (10)

where pl' is the (n, m) element of the density matrix after
the internal degrees of freedom have been traced out. In the
spirit of [13] the rates A+ can be expressed:

A, =2Re[D + S(¥v)], (11)

where D is the diffusion coefficient due to spontaneous
emission from the excited electronic states. Here D = 0 as
the population of the excited states vanishes due to the
dark-state nature of the final state. S(») is the fluctuation
spectrum of Heisenberg operator F(r):

S(v) = —— [ de™ (F(1)F(0), (12)

where, in the Schrodinger picture, F' = Fgr + Fgg, and
Ferr = 14Qu(05" — 077) and Fgg, = 750505 are
the part in the interaction Hamiltonian Eqs. (4) and (5) that
multiply b + bt. The average can be calculated using
the quantum regression theorem. We may split the compu-
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tation of the overall heating rate into three parts: the EIT
part AB'T, the Stark-shift part A3S", and interference be-
tween EIT and the Stark-shift part A™ for the remaining
cases. We find AFT =[n,(v +2Q5)?/D, ASSh =
(npQp)?*/D, and A = —2mmu(v +205)Qp/D,
where 208D =T2(v +2Qp)> + [-205 + (v +
2Q05)(A + v + Qp)]. Hence

Ar = [nav +2Qp) — 13031 /D, (13)

which will vanish for Eq. (7), hence yielding vanishing
mean phonon number (n) = AfAjA+ = 0. To achieve {n) =
0 the interference between the EIT and Stark-shift cooling
is essential, hence emphasizing the importance of the
constructive interference of both cooling schemes.
Figure 2 shows the numerical results of the approach to
the (n) = 0 point as the Lamb-Dicke parameter tends to
Zero.

Robustness.—The constructive interference between
EIT and Stark-shift contribution is also crucial for under-
standing the robustness of the scheme under fluctuating
parameters. If the Rabi frequencies deviate from Eq. (7) by
AQ,/p, the final population is affected by

(n) < (AQL*AQR)?, (14)

instead of second order as is usually the case. As is exem-
plified in Fig. 3, for a given value of the fluctuations of the
laser intensities, the final mean phonon number decreases
rapidly as one moves away from the pure Stark-shift or
pure EIT regime. This guarantees excellent performance
under real experimental conditions, overcoming an impor-
tant drawback of previous dark-state cooling schemes.
Indeed, the experimental realization of EIT cooling
achieved final phonon populations of order 107! [14]. In
contrast, Fig. 3 shows populations of at most 10~* for
comparable cooling rates to the EIT cooling. More realistic
Rabi frequency fluctuations of about 2% would yield final
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FIG. 2 (color online). The deviation of the analytical from the
exact numerical results in the final population is plotted versus
the deviation in ) (in units of trap frequency) from the optimal
operating point for different Lamb-Dicke parameters. Parameter
np varies as well so that nz/n4 =4, which from Eq. (7)
involves an optimal Rabi frequency Qp = v/2 (A = 10v, I =
10w, Q4 = 0.1v).

mean phonon numbers of the order of 10~% indicating
considerable potential for experimental progress.

Rate.—The interference structure of this scheme is also
essential for the high cooling rate W = A_ — A, . For the
resonance condition Eq. (7) we find

_ 821202
202+ (=20, A — v+ Q)P+ 2(r— 20,7
(15)

w

Qp is the only Rabi frequency involved in the condition
Eq. (7). As a function of Qp, Eq. (15) takes the approxi-
mate shape of a squared Lorentzian, with a peak close to
Qp = v/2 at which point the cooling rate expression
reduces to

_ Fn%l/z

w .
807

(16)

This is also an optimal point for Stark-shift cooling [9], but
it should be noted that the cooling rate of the current
proposal is slightly higher than that of Stark-shift cooling
thanks to the suppression of carrier and blue sideband.
Since the internal dynamics should be much faster than
the external one for the perturbation approach to work, the
analytic result is not valid for )4 < 4 v. Numerical stud-
ies show that the cooling rate can approach a rate which is
2 orders of magnitude smaller than the trap frequency and
more than an order of magnitude lager than EIT cooling. It
is noteworthy that the final state Eq. (6) is pure to first order
in the Lamb-Dicke parameter and that therefore a simple
unitary rotation exists such that in the final state the num-
ber of phonons scales as a fourth power of the Lamb-Dicke
parameter.

Implementation.—The way the effective p and 7p
couplings can be implemented is not unique. One option
is to use two lasers to create the EIT cooling part and to use
magnetic gradients [15] for the Stark-shift part. In this

o 00
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FIG. 3 (color online). Mean photon number {(n) for nz = 0.4
and (), = 0.1» as a function of the Lamb-Dicke parameter 74
and of variations around the optimal Rabi frequency QY (A =
10w, ' = 10v). For 5, = 0.1 we find (n) = 10"* and also
observe that fluctuations have a much weaker effect than in
the Stark-shift cooling regime (1, = 0) indicating the robust-
ness of this cooling scheme.
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FIG. 4 (color online). Physical realization of ), and Qp
couplings, for cooling in the trap axis, as two Raman pair of
beams characterized by their respective Rabi frequency (), and
), and their Lamb-Dicke parameters 5/, and 7,,.

system the magnetic gradients create a coupling of the
following type: Ao (b + b'), where A is proportional to
the magnetic gradients and the two level system is driven
using a microwave, {),0, cosw ¢, where (), corresponds
to the Rabi frequency and w, to the angular frequency of
the driving wave. After a polaron transformation the re-
sulting Hamiltonian is exactly as in Eq. (5) when the Rabi
frequency is replaced by (), and the Lamb-Dicke parame-
ter is replaced by 2.

This scheme can be especially useful to cool nanoscale
resonators, by using the setup described in [16]. In canti-
levers the speed of cooling is crucial due to the finite Q
value, which is a central factor limiting the attainable final
temperatures at present. The high cooling rate achieved by
the described scheme will result in lower final temperatures
bringing us closer to the goal of reaching the quantum
regime in cantilever systems.

Alternatively, one can also use Raman beams with large
single-photon detuning and parameters (), and 7, to
couple levels |g;) and |g,), as is shown in Fig. 4. A
derivation of the correspondence nz = 2m, will be pre-
sented elsewhere. For cooling in the trap axis, n4 =
'y cosd, and for simplicity, )y = 7,,.

If we choose the optimal point for the cooling rate and
fluctuations )z = £, the condition becomes nz/n, = 4.
This can be achieved for a layout where 6§ = 60°, in which
case the wavelengths of both pairs are the same. Even if 0
is constrained to other nonoptimal values, the robustness of
the scheme ensures excellent performance for any geomet-
rical configuration. A proposal of experimental implemen-
tation for this scheme would use vacuum chambers with
windows at 22.5° and/or 45° from the trap axis, which
generally allow for an angle range of about £10°. Taking
45° as an operating value, we find ngz/m, = 24/2.
Different optimal sets of parameters can be obtained for
this situation depending on whether the cooling rate or the
final temperature has to be optimized. For the latter, the
condition in Eq. (7) has to be observed, 1, = 0.6» and
A = 0. This will assure an extremely stable cooling rate
smaller than EIT cooling but still better than sideband
cooling. This final result can be improved depending on
the particular values of the transition linewidth T ¢. If in

turn the cooling rate is to be enhanced, Eq. (7) does not
need to be satisfied. In particular, for 4 =~ 0.4y, Qp =
0.45v with 5% fluctuation and A =~ —2v the population
can still be as low as 1073 while still cooling faster than
EIT cooling. Taking into account the fact that angles up to
55° are accessible the cooling rate can be improved further
by up to 2 orders of magnitude.

Multimode cooling.—Finally, the cooling scheme has
also been tested for an ion chain using Monte Carlo simu-
lation [17]. Remarkable results have been obtained and a
detailed study will be presented elsewhere.

Conclusion.—We have introduced a robust and fast
cooling scheme. Theory predicts that in zeroth order in
the Lamb-Dicke parameter and for a readily accessible
resonance condition on the Lamb-Dicke parameter this
scheme reaches zero temperature. The final temperature
is therefore essentially bounded by laser and electrode
fluctuations. Beyond the academic interest of proving the
existence of such a scheme, its robustness makes it ex-
tremely attractive for a broad range of experimental
realizations.
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