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We show that a film of a semiconductor in which s-wave superconductivity and Zeeman splitting are

induced by the proximity effect, supports zero-energy Majorana fermion modes in the ordinary vortex

excitations. Since time-reversal symmetry is explicitly broken, the edge of the film constitutes a chiral

Majorana wire. The heterostructure we propose—a semiconducting thin film sandwiched between an

s-wave superconductor and a magnetic insulator—is a generic system which can be used as the platform

for topological quantum computation by virtue of the existence of non-Abelian Majorana fermions.
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Introduction.—In two spatial dimensions, where permu-
tation and exchange are not necessarily equivalent, par-
ticles can have quantum statistics which are strikingly
different from the familiar statistics of bosons and fermi-
ons. In situations where the many body ground state wave
function is a linear combination of states from a degenerate
subspace, a pairwise exchange of the particle coordinates
can unitarily rotate the ground state wave function in the
degenerate subspace. In this case, the exchange statistics is
given by a multidimensional unitary matrix representation
(as opposed to just a phase factor) of the 2D braid group,
and the statistics is non-Abelian [1]. It has been proposed
that such a system, where the ground state degeneracy is
protected by a gap from local perturbations, can be used as
a fault-tolerant platform for topological quantum compu-
tation (TQC) [2].

Recently, the � ¼ 5=2 fractional quantum hall (FQH)
state at high magnetic fields and at low temperature has
been proposed as a topological qubit [2]. This theoretical
conjecture, however, awaits experimental verification
[3,4]. An equivalent system, in which the ordered state is
in the same universality class as the 5=2 FQH state, is the
spinless (spin-polarized) px þ ipy superconductor or su-

perfluid [5]. In a finite magnetic field, a vortex excitation in
such a superconductor traps a single, nondegenerate, zero-
energy bound state. The key to non-Abelian statistics is
that the second-quantized operator for this zero-energy
state is self-Hermitian, �y ¼ �, rendering � a Majorana
fermion operator. If the constituent fermions have spin, the
spin-degeneracy of the zero-energy excitation spoils the
non-Abelian statistics. To circumvent this problem in a
realistic superconductor such as strontium ruthenate, it
has been proposed that the requisite excitations are the
exotic half-quantum vortices [6].

Even though quenching the spin degeneracy by either
the application of a magnetic field [7] or by using spinless
atomic systems [8] is possible in principle, it is practically

very difficult. Therefore, it is desirable to have systems
whose most natural excitations themselves follow non-
Abelian statistics in spite of the electrons carrying a spin
quantum number. The recent proposal by Fu and Kane [9]
points out one such system—the surface of a strong TI in
proximity to an s-wave superconductor—which supports a
nondegenerate Majorana fermion excitation in the core of
an ordinary vortex. In this Letter, we propose a simple
generic TQC platform by showing that it is possible to
replace the TI with a regular semiconductor film with spin-
orbit coupling, provided the time-reversal symmetry is
broken by proximity of the film to a magnetic insulator.
It is encouraging that the s-wave proximity effect has
already been demonstrated in 2D InAs heterostructures
which additionally also have a substantial spin-orbit cou-
pling [10]. Thus, the structure we propose is one of the
simplest to realize non-Abelian Majorana fermions in the
solid-state context.
Theoretical model.—The single-particle effective

Hamiltonian H0 for the conduction band of a spin-orbit
coupled semiconductor in contact with a magnetic insula-
tor is given by (we set @ ¼ 1 henceforth)

H0 ¼ p2

2m� ��þ Vz�z þ �ð ~�� ~pÞ � ẑ: (1)

Here, m�, Vz, and � are the conduction-band effective
mass of an electron, effective Zeeman coupling induced
by proximity to a magnetic insulator (we neglect the direct
coupling of the electrons with the magnetic field from the
magnetic insulator), and chemical potential, respectively.
The coefficient� describes the strength of the Rashba spin-
orbit coupling, and �� are the Pauli matrices. Despite the
similarity in the spin-orbit-coupling terms, H0 and the
Hamiltonian for the TI surface in Ref. [9] differ by the
existence of a spin-diagonal kinetic energy term in Eq. (1).
Because of the spin-diagonal kinetic energy, there are, in
general, two spin-orbit-split Fermi surfaces in the present
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system, in contrast to the surface of a TI in which an odd
number of bands cross the Fermi level [9]. In Eq. (1), for
out-of-plane Zeeman coupling such that jVzj> j�j, a
single band crosses the Fermi level. Thus, analogous to a
strong TI surface (but arising from qualitatively different
physics), the system has a single Fermi surface, which is
suggestive of non-Abelian topological order if s-wave
superconductivity is induced in the film.

The proximity-induced superconductivity in the semi-
conductor can be described by the Hamiltonian,

Ĥ p ¼
Z

drf�0ðrÞĉy" ðrÞĉy# ðrÞ þ H:c:g; (2)

where ĉy�ðrÞ are the creation operators for electrons with
spin � and �0ðrÞ is the proximity-induced gap. The corre-
sponding BdG equations written in Nambu space become,

H0 �0ðrÞ
��

0ðrÞ ��yH
�
0�y

� �
�ðrÞ ¼ E�ðrÞ; (3)

where �ðrÞ is the wave function in the Nambu spinor
basis,�ðrÞ ¼ ½u"ðrÞ; u#ðrÞ; v#ðrÞ;�v"ðrÞ�T . Using the solu-
tions of the BdG equations, one can define Bogoliubov

quasiparticle operators as �̂y ¼ R
dr
P

�u�ðrÞĉy�ðrÞ þ
v�ðrÞĉ�ðrÞ. The bulk excitation spectrum of the BdG
equations with �ðrÞ ¼ �0 has a gap for nonvanishing
spin-orbit coupling.

BdG equations for a vortex.—We now consider the
vortex in the heterostructure shown in Fig. 1, and take

the vortex-like configuration of the order parameter:
�0ðr; �Þ ¼ �0ðrÞe{�. Because of the rotational symmetry,
the BdG equations can be decoupled into angular momen-
tum channels indexed by m with the corresponding spinor
wave function,

�mðr; �Þ ¼ e{m�½u"ðrÞ; u#ðrÞei�; v#ðrÞe�i�;�v"ðrÞ�T: (4)

Since the BdG equations are particle-hole symmetric, if
�mðrÞ is a solution with energy E, then {�y�y�

�
mðrÞ is also

a solution at energy�E in the angular momentum channel
�m. Here, �y is defined to be the Pauli matrix in Nambu

spinor space. Thus, a zero-energy solution can be non-
degenerate only if it exists in the m ¼ 0 angular momen-
tum channel.
The radial BdG equations describing the zero-energy

state �ðrÞ in the m ¼ 0 channel can be written as

H0 �0ðrÞ
�0ðrÞ ��yH

�
0�y

� �
�ðrÞ ¼ 0; H0 ¼ ��ð@2r þ 1

r @rÞ þ Vz �� �ð@r þ 1
rÞ��@r �ð�@2r � 1

r @r þ 1
r2
Þ � Vz ��

 !
(5)

with � ¼ 1
2m� . Additionally, since the BdG matrix is real, both��ðrÞ and {�y�y�ðrÞ are also E ¼ 0 solutions. Thus,�ðrÞ

can be nondegenerate only if {�y�y�ðrÞ ¼ {	�ðrÞ, where the ð{�y�yÞ2 ¼ �1 imposes the constraint 	 ¼ �1. Fixing a
value of 	 allows one to define �ðrÞ in terms of the reduced spinor �0ðrÞ ¼ ½u"ðrÞ; u#ðrÞ�T using the relations v"ðrÞ ¼
	u"ðrÞ and v#ðrÞ ¼ 	u#ðrÞ. The corresponding reduced BdG equations take the form of a 2� 2 matrix differential
equation:

��ð@2r þ 1
r @rÞ þ Vz �� 	�ðrÞ þ �ð@r þ 1

rÞ�	�ðrÞ � �@r ��ð@2r þ 1
r @r � 1

r2
Þ � Vz ��

 !
�0ðrÞ ¼ 0: (6)

We now approximate the radial dependence of �0ðrÞ by
�0ðrÞ ¼ 0 for r < R and �0ðrÞ ¼ �0 for r � R. In view of
the stability of the putative Majorana zero-energy solution
to local changes in the Hamiltonian [5], such an approxi-
mation can be made without loss of generality. For r < R,
the analytical solution of Eq. (6) is given by �0ðrÞ ¼
½u"J0ðzrÞ; u#J1ðzrÞ�T with the constraint

�z2 þ Vz �� z�
�z �z2 � Vz ��

� �
u"
u#

� �
¼ 0: (7)

Here, JnðrÞ are the Bessel functions of the first kind. The
characteristic equation for z is

ð�z2 ��Þ2 � V2
z � �2z2 ¼ 0: (8)

Since the Bessel functions are symmetric, we use the roots

of Eqn. (8),�z1;�z3, to find two solutions which are well
behaved at the origin: �1ðrÞ ¼ ½u"J0ðz1rÞ; u#J1ðz1rÞ�T and
�2ðrÞ ¼ ½u"J0ðz3rÞ; u#J1ðz3rÞ�T . Therefore, the full solu-
tion at r < R is �<

0 ðrÞ ¼ c1�1ðrÞ þ c2�2ðrÞ.
At large distances r > R, where �0ðrÞ ¼ �0, the solu-

tion to Eq. (6) is complicated. Nevertheless, one can write
the solution as a series expansion in 1=r:

�0ðrÞ ¼ e{zrffiffiffi
r

p X
n¼0;1;2...

an
rn

(9)

where an are the corresponding spinors. The zeroth order
coefficient a0 satisfies the following equation:

�z2 þ Vz �� 	�0 þ {z�
�	�0 � {z� �z2 � Vz ��

� �
a0 ¼ 0: (10)

FIG. 1 (color online). Schematic picture of the proposed het-
erostructure exhibiting Majorana zero-energy bound state inside
an ordinary vortex.
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The higher order coefficients an can be calculated from a0
using a set of recursion relations [11]. The characteristic
equation for Eq. (10) has 4 complex roots for z, which are
shown in Fig. 2. Physical solutions of Eq. (6) at r > R,
�>

0 ðrÞ ¼
P

n>2cn�nðrÞ, require that Im½zn�> 0. [Here

�nðrÞ is the solution corresponding to the eigenvalue zn].
Thus, for ð�2 þ�2

0Þ> V2
z , there are two solutions for 	 ¼

�1. On the other hand, for ð�2 þ �2
0Þ< V2

z , there are three

solutions for 	 ¼ �1 and only one for 	 ¼ 1.
To obtain a unique solution for the zero-energy state, the

2-component wave functions �>
0 ðrÞ and �<

0 ðrÞ should

satisfy four boundary conditions at r ¼ R, namely, the
continuity of �0ðRÞ and �0

0ðRÞ. One additional constraint
comes from the normalization of the wave function in all
space. Thus, there are five independent constraints for the
coefficients cn. A unique zero-energy solution exists if the
number of unknown coefficients cn is five, which is the
case for ð�2 þ�2

0Þ< V2
z and 	 ¼ �1. In this case, the

wave functions �<
0 ðrÞ ¼

P
n¼1;2cn�nðrÞ and �>

0 ðrÞ ¼P
n¼3;4;5cn�nðrÞ have 2 and 3 unknown coefficients, re-

spectively. In all other cases the number of unknowns cn is
smaller than 5, and thus, as we have checked explicitly,
solutions for the zero-energy eigenfunction do not exist.
From these arguments, one can conclude that, for ð�2 þ
�2

0Þ< V2
z , an ordinary vortex in the superconducting con-

densate contains a unique nondegenerate E ¼ 0 solution in
the m ¼ 0 angular momentum channel. The numerical
solution for the zero-energy state is shown in Fig. 2(e). It
is straightforward to check that the zero-energy solution
corresponds to a self-Hermitian second-quantized operator
� ¼ �y: it is a Majorana fermion excitation.

We can also consider the special case with � ¼ 0, Vz ¼
0 in the above equations, which describes the recent pro-
posal for TQC [9] using zero-energy Majorana bound

states at vortices on the interface of a TI and an s-wave
superconductor. In this case, we find a single solution for
r < R and a pair of independent solutions for r > R. Since
the BdG differential equation is now only first order, we
need only match the 2-component spinors themselves (de-
rivatives need not match) which yields 3 equations for the 3
coefficients. This leads to a unique Majarana fermion
solution at the vortex, which is consistent with Ref. [9].
Interestingly, in contrast to our Hamiltonian for �> 0, the
condition for the existence of a Majorana fermion for � ¼
0 is given by V2

z < ð�2
0 þ�2Þ. The model considered in

Ref. [9] and our present system have a similar order
parameter structure. In both cases, the order parameter
component hc"ðrÞc#ðr0Þi has an s-wave orbital symmetry

while the order parameter components hc"ðrÞc"ðr0Þi and

hc#ðrÞc#ðr0Þi have px þ {py and px � {py orbital symme-

tries, respectively. On the surface of a TI, because of time-
reversal invariance, jhc"ðrÞc"ðr0Þij ¼ jhc#ðrÞc#ðr0Þij. In our

system, the ratio of the order parameter components in the
two spin sectors is different from 1, and approaches 1 in the
limit �2=� � Vz. In both cases, however, the supercon-
ducting pairing potential is s-wave, and is induced by
proximity effect. Therefore, the superconducting state
and the associated non-Abelian topological character are
expected to be robust in the presence of finite disorder.
Topological phase transition.—We have shown above

that a nondegenerate Majorana state exists in a vortex in
the superconductor only in the parameter regime ð�2 þ
�2

0Þ<V2
z . This suggests that there must be a quantum

phase transition (QPT) separating the parameter regimes
ð�2 þ �2

0Þ< V2
z and ð�2 þ �2

0Þ> V2
z , even though the

system in both regimes is an s-wave superconductor. A
nondegenerate zero-energy solution cannot disappear un-
less a continuum of energy levels appears around E ¼ 0.
Such a continuum of states at E ¼ 0 can only appear if the
bulk gap closes, which can be used to define a topological
quantum phase transition. In the present system, such a
phase transition can be accessed by varying either the
Zeeman splitting or the chemical potential. A similar to-
pological quantum phase transition has already been pre-
dicted for ultracold atoms with vortices in the spin-orbit
coupling [12].
The bulk gap of the present system can be calculated

from the bulk excitation spectrum,

E2¼V2
z þ�2

0þ ~
2þ�2k2�2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z�

2
0þ ~
2ðV2

z þ�2k2Þ
q

;

(11)

where ~
 ¼ �k2 ��. As seen in Fig. 3, the excitation gap
first increases as a function of �0 (proximity-induced pair
potential) and then decreases and vanishes at a critical

point, �0c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2
z ��2

q
, before reopening and increasing

with �0. The critical point marks the phase transition
between a topologically nontrivial (left) and a topologi-
cally trivial (right) s-wave superconducting phases. The
scale of the gap in the topologically nontrivial phase is set

FIG. 2 (color online). Upper panel: complex roots of the
Eq. (10) for different values of � and 	 with �0 � 0. Lower
panel: Numerical solution for the Majorana zero-energy state
�0ðrÞ ¼ ½uðrÞ; vðrÞ�T for 	 ¼ �1 and �< Vz. The dashed (red)
and solid (blue) lines correspond to uðrÞ and vðrÞ, respectively.
Here we used the following parameters: � ¼ � ¼ Vz ¼ 1, � ¼
0, �0 ¼ 0:1 and R ¼ 1. The boundary conditions used are
�0ð0Þ ¼ ð1; 0ÞT and �0ðr ¼ 40Þ ¼ ð0; 0ÞT .
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by the strength of the spin-orbit coupling � and the posi-
tion of the critical point. The fact that the phase on the
right-side of the critical point does not support a nonde-
generate Majorana mode can be verified by observing that,
for these values of �0, it is possible to reduce Vz such that
jVzj< j�j without the gap vanishing at any point. This is
the phase without Majorana Fermion excitations. In fact,
this phase can be reached from the conventional s-wave
superconductor with Vz ¼ 0 and � ¼ 0 without crossing a
phase transition.

Majorana edge modes and TQC.—In analogy with
Ref. [9], we find that an interface between two supercon-
ductor layers, which can be deposited on the semiconduc-
tor thin film, supports a pair of zero-energy excitations
when the phase difference between the superconductors
is �. This geometry can be analyzed in a way that closely
follows our derivation of the localized state in a vortex in
the m ¼ 0 channel, since the BdG Hamiltonian can again
be reduced to a real matrix. In this case, we find that, in the
parameter regime ð�2 þ �2

0Þ<V2
z , there are 3 linearly

independent solutions on each side of the interface. Since
the number of constraints to be satisfied at the interface (we
assume the interface to be of negligible width) remains 5 as
before, one expects a pair of independent zero-energy
solutions. The interface, therefore, constitutes a nonchiral
Majorana wire, which can be exploited for braiding in a
way completely analogous to Ref. [9] to perform TQC.
Majorana bound states as well as Majorana edge modes in
our system can be studied experimentally using nonlocal
Andreev reflection [13] and electrically detected interfer-
ometry [14,15] experiments.

The experimental implementation of this proposal in-
volves a heterostructure of a magnetic insulator (e.g.,

EuO), a strong spin-orbit coupled semiconductor (e.g.,
InAs), and an s-wave superconductor with a large Tc

(e.g., Nb). Using these materials, it is possible [11] to
induce an effective superconducting pairing potential�0 	
0:5 meV and a tunneling-induced effective Zeeman split-
ting Vz 	 1 meV. Additionally, the strength of spin-orbit
interaction � in InAs heterostructures is electric-field tun-

able and can be made as large as� 
 50 meV �A [16]. With
these estimates, the quasiparticle gap Eg is of the order of

1 K. Given that the chemical potential is gate-tunable and
can be of the of the order of �0, we numerically estimate
the magnitude of the excitation energy for the bound states
in a vortex core of size 	20 nm to be of the order of 0.1 K
[11], which sets the temperature scale for TQC in this
system.
Conclusion.—Our proposed TQC platform should be

simpler to implement experimentally than any of the
TQC candidates proposed in the literature so far, since it
involves a standard heterostructure with a magnetic insu-
lator, a semiconductor film, and an ordinary s-wave super-
conductor. We believe that the proposed scheme provides
the most straightforward method for the solid-state real-
ization of non-Abelian Majorana fermions. A significant
practical advantage of the proposed TQC scheme is its ge-
neric simplicity: it requires neither special samples or ma-
terials nor ultralow temperatures or high magnetic fields.
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FIG. 3 (color online). Quasiparticle gap versus pairing poten-
tial for various values of the chemical potential �. Here, Eg;red ¼
Eg=Vz, �0;red ¼ �0=Vz,�red ¼ �=Vz, and �red ¼ �=

ffiffiffiffiffiffiffiffiffi
�Vz

p
. The

maximum value of the gap in the topologically nontrivial super-
conductor, and the corresponding area in the phase diagram,
decreases with increasing values of �. For large negative �, the
system makes a transition to a semiconductor. The phase to the
right of the critical point is the topologically trivial s-wave
superconductor.
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