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Computing the ground-state energy of interacting electron problems has recently been shown to be hard

for quantum Merlin Arthur (QMA), a quantum analogue of the complexity class NP. Fermionic problems

are usually hard, a phenomenon widely attributed to the so-called sign problem. The corresponding

bosonic problems are, according to conventional wisdom, tractable. Here, we demonstrate that the

complexity of interacting boson problems is also QMA hard. Moreover, the bosonic version of

N-representability problem is QMA complete. Consequently, these problems are unlikely to have efficient

quantum algorithms.
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Many important model Hamiltonians in physics, such as
the Hubbard model (both fermionic and bosonic) and those
for superconductivity and the quantum Hall effect, involve
at most two-body interactions [1]. The ground-state wave
function and energy of these Hamiltonians play a key role
in understanding these fascinating phenomena. In some of
these phenomena, electrons are the major players.
Problems involving fermionic particles such as electrons
often seem to be computationally more difficult than those
with bosonic counterparts. This intractability is often at-
tributed to the so-called ‘‘sign problem,’’ occurring in
Quantum Monte Carlo simulations [2]. On the other
hand, bosonic problems do not suffer from the sign prob-
lem [3] and are thus regarded as tractable.

Schuch and Verstraete and Liu, Christandl, and
Verstraete have recently shown that computing the
ground-state energy of general interacting electrons is
QMA hard [4,5]. The complexity class QMA (quantum
Merlin Arthur) is a generalization of the class NP (non-
deterministic polynomial time) to the quantum realm. It
was introduced by Kitaev [6] in the so-called local
Hamiltonian problem (LHP), where, roughly speaking,
the goal is to determine the ground-state energy of a spin
Hamiltonian involving only few-body interaction terms.
QMA hard problems are regarded as difficult, unlikely to
be solved efficiently even by a quantum computer.
However, a quantum computer, if given the solution to
any problem in QMA, along with a suitable ‘‘certificate’’
or ‘‘witness state,’’ can efficiently verify whether the solu-
tion is correct or not. In fact, as a result of a series of works
[7–9], even for nearest-neighbor two-body interactions
among spin-1=2 particles on a two-dimensional lattice,
the LHP is QMA complete. With higher magnitude of
spins in one dimension, the LHP can be QMA complete
as well [10]. Understanding and classifying the complexity
of physical models and investigating hard problems using

statistical mechanical tools have become important re-
search endeavors [4–17], as a result of interplay between
physics, chemistry, mathematics, and computer science.
The fact that interacting fermion problems are hard

motivates us to investigate the corresponding bosonic
problems. Their complexity seems less explored. Could
bosonic problems be so hard as to be intractable? We
show that generic nearest-neighbor two-body interacting
boson problems are indeed QMA hard. Inspired by
Ref. [5], we study the bosonic version of the (fermionic)
N-representability problem [18,19], where one is given a
two-particle reduced density matrix � and needs to decide
whether there exists a consistent global N-body state �.
This problem has been vastly explored in quantum chem-
istry [20], as its solution would enable efficient solu-
tion of ground-state energy for generic two-body inter-
acting fermionic systems. We show that the bosonic
N-representability problem is also QMA complete.
Additionally, we show that the bosonic N-representability
problem given only diagonal elements is NP hard.
QMA hardness of interacting boson problems.—

Consider boson creation and annihilation operators ayj , aj
for the jth site or mode, obeying the commutations [21]:

½ai; aj� ¼ 0 ¼ ½ayi ; ayj �; ½ai; ayj � ¼ �ij: (1)

The use of these operators preserves the symmetry of the
bosonic wave functions under permutations, and any
N-boson wave function can be represented as follows:

jc i ¼ X

i1þ...þim¼N

ci1;...;imðay1 Þi1 . . . ðaymÞim j�i; (2)

where ik (0 � ik � N) denotes the number of bosons at the
kth site, m is the total number of sites, and j�i denotes the
vacuum state without any bosons. Note that we restrict
ourselves to states with exactly N bosons [22].
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We construct a bosonic Hamiltonian H bose, whose
ground-state energy determines the ground-state energy
of the following quantum spin-glass model H :

H ¼ X

hi;ji

X3

�;�¼0

c
��
ij �

ð�Þ
i � �ð�Þ

j ; (3)

where i, j label the site, �ð0Þ ¼ 1 denotes the identity and

�ð1Þ ¼ �x, �ð2Þ ¼ �y, and �ð3Þ ¼ �z are the three Pauli
matrices. The coefficients c

��
ij are real but arbitrary.

Oliveira and Terhal [9] showed that determining the
ground-state energy of H is QMA hard , even if the
interactions are restricted to nearest-neighbor sites hi; ji
in the two-dimensional square lattice. By way of reduction,
solving the ground-state energy of H bose is also QMA
hard. To construct H bose, we use the Schwinger boson
correspondence between qubit and boson states (see, e.g.,
Ref. [23]) given by the following map:

�x
i $ ayi bi þ byi ai; �y

i $ iðbyi ai � ayi biÞ;
�z

i $ ayi ai � byi bi;

where the operators ai, bi correspond to distinct sites. It is
easy to verify that the bosonic operators obey the commu-
tation relations of the corresponding Pauli operators. We
can regard the qubit at site i as a single boson that can be in

one of two different degrees of freedom: jzii $ ðayi Þzi �
ðbyi Þ1�zi j�i with zi 2 f0; 1g, corresponding to the dual-rail
encoding of a photonic qubit in the Knill-Laflamme-
Milburn linear-optics quantum computation scheme [24].
Hence, N qubits can be represented by N bosons in 2N
sites (or N sites with each boson possessing two distinct
internal degrees of freedom):

jz1; . . . ; zNi $ ðay1 Þz1ðby1 Þ1�z1 � � � ðayNÞzN ðbyNÞ1�zN j�i:
As any two-local qubit Hamiltonian can be written as a

linear combination of terms with at most two Pauli opera-
tors, the corresponding bosonic Hamiltonian can be written
as a combination of products of at most two annihilation
and two creation operators. To ensure that there be exactly
one boson on the pair of sites corresponding to i, we add

the following extra terms: Pi � ðayi ai þ byi bi � 1Þ2,
which commute with other terms in the Hamiltonian. The
total bosonic Hamiltonian is then

H bose � H ðay; by; a; bÞ þX

i

cPi; (4)

which involves at most nearest-neighbor two-body inter-
actions [25]. By making the weight c large enough, e.g.,P

i;j;�;�jc��
ij jNðN � 1Þ=2, we guarantee that the ground

state of the full Hamiltonian has exactly one boson per
site. Thus H bose may be represented with at most a poly-
nomially larger number of bits as compared toH . Thus, if
one can compute the ground-state energy of general bo-
sonic Hamiltonians with at most two-body interactions,
one can solve general spin-1=2 two-local Hamiltonian

problems. As solving the latter is QMA hard, solving the
former is QMA hard as well. This shows that interacting
boson problems are generally difficult.
QMA hardness of bosonicN-representability problem.—

We consider the number of bosons N to be fixed, and
assume that the number of modesm that the bosons occupy
is large enough, i.e.,m � �N for some constant � > 0. The
number of different ways N m that N identical bosons can
occupy m sites is N m ¼ ðNþm�1

N Þ, which grows exponen-

tially in N, i.e., N m * ð�þ 1ÞN=�N when N is large.

Given an N-boson state �ðNÞ, the two-boson reduced state

is calculated by tracing out all but two bosons: �ð2Þ �
TrN�2�

ðNÞ, where �ðNÞ is in general a mixture of states

jc i of the form (2). More precisely, �ð2Þ is given via its
matrix elements:

�ð2Þ
ijkl �

1

NðN � 1Þ ha
y
k a

y
l ajaii; (5)

where the bracket indicates the expectation value over the

state �ðNÞ. Note that the one-boson reduced density matrix

�ð1Þ � TrN�1�
ðNÞ, defined via �ð1Þ

ik � hayk aii=N, is com-

pletely determined once �ð2Þ is known:

�ð1Þ
ik ¼ X

l

�ð2Þ
ilkl: (6)

Informally, the bosonic N-representability problem
(withm sites) asks whether there is anN-boson state whose
two-particle reduced density matrix equals a given state �.
To deal with technical issues related to precision, we are
promised that when there is no N-boson state consistent
with it, every two-particle reduced state is ‘‘far away’’ from
�. Formally, we are given a two-boson density matrix � of
size ½mðmþ 1Þ=2� � ½mðmþ 1Þ=2�, and a real number
� � 1=polyðNÞ, with all numbers specified with polyðNÞ
bits of precision. We would like to decide if: (‘‘YES’’ case)
There exists an N-boson state � such that TrN�2ð�Þ ¼ �,
or if (‘‘NO’’ case). For all N-boson states �, k TrN�2ð�Þ �
�k1 � �.
We show that the bosonic N representability is QMA

hard under Turing reductions [26]. In other words, we show
that given an efficient algorithm for bosonic
N representability, we can efficiently determine the
ground-state energy of H bose, a QMA hard problem as
established above. In the sequel, we refer to an algorithm
for N representability as the ‘‘membership oracle.’’
The first step is to write the two-particle interacting

terms in H bose in terms of a complete orthonormal set
Q of two-particle observables: Htwo�body �

P
Q2Q�QQ,

where the number of elements l � jQj 	Oðm4Þ. Note that
polyðmÞ is polyðNÞ, and so is polyðlÞ. The observables Q
are constructed as in the fermionic case [5]. We define
aI � ai2ai1 , for all pairs I ¼ ði1; i2Þ, i1 � i2. (Note that in

the case of fermions i1 < i2.) We fix a total order (denoted
by 
) on pairs of indices I. The observables in Q are
defined as follows:
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XIJ � 1
ffiffiffiffiffiffiffiffiffiffi
nInJ

p ðayI aJ þ ayJ aIÞ; for I 
 J; (7)

YIJ � �i
ffiffiffiffiffiffiffiffiffiffi
nInJ

p ðayI aJ � ayJ aIÞ; for I 
 J; (8)

ZI � 1

nI
ayI aI; for I 
 L; (9)

where the factor nI ¼ 1 if i1 � i2, nI ¼ 2 if i1 ¼ i2, and L
denotes the last pair in the ordering. These operators are
Hermitian and the XIJ and YIJ have expectation values in
the interval [�1, 1] and the ZI have expectation values in
[0, 1] for any two-particle state. In the two-particle Hilbert
space, they are orthogonal to each other under the trace
operator, e.g., TrðXIJZKÞ ¼ 0 for all I, J, K. They also

form a basis for any two-boson states �ð2Þ:

�ð2Þ ¼ ZL þ X

I
L
�ZI

ðZI � ZLÞ þ 1

2

X

I
J
ð�ðXIJÞXIJ

þ �ðYIJÞYIJÞ; (10)

where�Q¼TrðQ�ð2ÞÞ for allQ 2 Q. Using Eq. (6) we see

that the expectation value hayi aki of the one-body terms,
can be expressed as linear combination of the �Q. Thus we

have TrðHbose�
ðNÞÞ ¼ P

Q2Q�0
Q�Q, where �

0
Q includes the

contribution from both one-body and two-body terms, and

�Q are the coefficients of �ð2Þ � TrN�2ð�ðNÞÞ. Finding the

ground-state energy is equivalent to minimizing the linear
function fð ~�Þ ¼ P

Q2Q�0
Q�Q subject to the constraint that

~� 2 KN , where KN denotes the convex set of all ~� such

that the corresponding state �ð2Þ is N representable.
The above minimization of energy, subject to the convex

constraint that � is N representable, belongs to a class of
convex optimization problems which can be solved using
the shallow-cut ellipsoid algorithm [27,28] with the aid of
an N-representability membership oracle. If KN is con-
tained in a ball of radius R centered at the origin, and it
contains a ball of radius r, the run time is polyð logðR=rÞÞ
and the error in the solution due to computation with finite
precision is 1=polyðR=rÞ. The algorithm will be efficient
and of polynomially bounded error, if R=r is at most
polyðlÞ.

From the discussion leading to Eq. (10) it follows that

KN is contained in a ball of radius R ¼ ffiffi
l

p
centered at the

origin. However, the method used by Liu et al. [5] of
regarding aj as creation operator for a hole in site j cannot

be employed to suitably bound r from below. Instead, we
explicitly construct a set of N-boson states such that the
convex hull of the corresponding vectors f�Qg contains a
ball of radius 1=polyðlÞ. Relying on the property that
bosons can occupy the same site, for each Q we construct
states so as to maximize or minimize �Q. The resulting

points have the property that for any coordinate axis, there
exist at least two points at constant distance along that axis.
As a consequence, we show that their convex hull (which is

contained in KN) contains a ball with radius r � 1=polyðlÞ,
centered at the center of mass of the points.
An algorithm for bosonic N representability thus ena-

bles efficient calculation of the ground-state energy of the
Hamiltonian H bose. Consequently, N representability is
QMA hard.
QMA completeness.—Is the bosonic N representability

inside QMA or even harder? We show that the bosonic
N-representability problem is indeed inside QMA, imply-
ing that the problem is QMA complete. To establish this,
we construct a QMA proof system, i.e., describe a witness
state 	 (over polynomially many qubits) for the
N representability of a given two-boson density matrix �,
and a polynomial-time quantum algorithm V (the ‘‘veri-
fier’’) that expects such a pair �, 	 as input. The verifier
determines probabilistically whether a given two-boson
density matrix � is N representable, or is far from being
N representable. In the YES case, V outputs YES with
probability p1, and in the NO case, V outputs NO with
probability at least 1� p0. For the problem to be in QMA,
the gap p1 � p0 should be at least 1=polyðNÞ; this gap can
be amplified to 1� e�polyðNÞ [6,29].
For the witness state, we represent an N-boson state �

using m qudits (d-dimensional quantum systems), via the
following correspondence, also known as Holstein-
Primakoff bosons (see, e.g., Ref. [23]):

ai $ Ai � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ Szi

p Sþi ; ayi $ Ay
i � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sþ Szi þ 1

p S�i ;

where S�i are the raising or lowering operators for ith
spin, and 2s � N. The spin operators above satisfy the
bosonic commutation relations provided the total spin
magnitude is s. The boson number states jni 2
fj0i; j1i; . . . ; j2sig at one site correspond to the spin states
jsni 2 fjsi; js� 1i; . . . ; j � sig, and d ¼ 2sþ 1. A bo-

sonic observableO¼ayi a
y
j alakþayk a

y
l ajai is transformed

into ~O ¼ Ay
i A

y
j AlAk þ Ay

kA
y
l AjAi, which is a tensor prod-

uct of at most four single-qudit observables, in contrast to
the nonlocal string operators in the fermionic case [5].

The expectation value h ~Oi can be estimated efficiently.

One method is to explicitly diagonalize the observable ~O
as

P
i
ij�iih�ij, and measure the given qudit representation

~� of the bosonic state � in the basis fj�iig. Repeating the
measurement on polynomially many copies of ~�, we can

estimate h ~Oi. We note that a quantum circuit using qudits
with d ¼ 2sþ 1 can be implemented efficiently by an
equivalent circuit using qubits.
The witness 	 consists of polynomially many blocks,

where each block has m qudits that represent a state ~� that
is claimed to be an N-boson state with TrN�2ð~�Þ ¼ �. The
verifier V measures, on each block, the observableP

kA
y
k Ak ¼ ms�P

kS
z
k to check whether the particle num-

ber is N. If not, V outputs NO. This measurement projects
each block onto the space of fixed particle number states. If
the particle number is N, V continues to perform measure-
ments for a suitable set of observables (e.g., those corre-

PRL 104, 040501 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

29 JANUARY 2010

040501-3



sponding to Q) using the projected states. It compares
whether the outcomes match the expectation values speci-
fied by �, to check for consistency. It outputs YES if the
errors are less than �=polyðNÞ (for a suitable polynomial),
otherwise outputs NO. When � is N representable, the
prover supplies polynomially many copies of the correct
state � such that TrN�2ð�Þ ¼ �, and the verifier always
answers YES (i.e., p1 ¼ 1), as the measurement outcome
is always consistent with �. When � is notN representable,
the prover can cheat by entangling different blocks of
qudits. Using a Markov argument, first employed by
Aharonov and Regev [30] and later by Liu [28], one can
show that the verifier will still output NO with probability
��=polyðNÞ. Thus N representability is in QMA [31], and
hence QMA complete. This in turn implies that determin-
ing the ground-state energy of interacting bosons with two-
body interactions is also QMA complete.

Further results.—We follow the same argument as in
Ref. [5] and conclude that pure-state bosonicN representa-
bility is in QMAðkÞ, as the essential point is to verify the
purity of the certificate. Next, consider the bosonic
N-representability problem when only the diagonal ele-

ments Dij � hayi ayj ajaii are specified. If one considers the
case m ¼ 2N and the mapping by the Schwinger represen-
tation, one finds that the solution enables one to solve the
ground-state energy of local spin Hamiltonians which only
contain �z operators. The latter corresponds to a classical
spin-glass problem, and is known to be NP hard [17]. Thus
the problem of deciding N representability given fDijg is
also NP hard.

Concluding remarks.—We have shown that two families
of boson problems are QMA complete, implying that in the
worst-case scenario they are unlikely to be solved effi-
ciently even by quantum computers. However, this does
not preclude the possibility of efficient approximation
algorithms. Approaches such as mean-field theory, path-
integral quantum Monte Carlo calculations [3], and more
recently matrix product states [32] and multiscale entan-
glement renormalization ansatz [33] are important endeav-
ors towards classical approximation algorithms. It is
possible that many physical models fall into ‘‘easy’’ in-
stances that can be solved efficiently by these schemes. A
more speculative direction is to develop quantum approxi-
mation algorithms, which have potential speedup.
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