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The thermal Casimir force between two metallic plates is known to depend on the description of

material properties. For large separations the dissipative Drude model leads to a force a factor of 2 smaller

than the lossless plasma model. Here we show that the plane-sphere geometry, in which current

experiments are performed, decreases this ratio to a factor of 3=2, as revealed by exact numerical and

large-distance analytical calculations. For perfect reflectors, we find a repulsive contribution of thermal

photons to the force and negative entropy values at intermediate distances.
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Interest in the Casimir force, arising due to the confine-
ment of the vacuum fluctuations of electromagnetic fields
between two reflecting bodies, has been continuously
growing during the last decade and the motivation for
measuring it precisely has led to a number of original
experiments using various modern technologies [1–7].
The Casimir force depends on a number of factors, includ-
ing the bodies’ material properties [8,9], their surface state
[10–12] and shape. Current experiments are performed
using a spherical and a plane surface. The force in this
plane-sphere geometry is usually calculated within the
proximity force approximation (PFA) [13] which averages
the force calculated in the plane-plane geometry over the
local intersurface distances. Only recently have studies
been devoted to Casimir force evaluations going beyond
the domain of validity of PFA [14–19].

The influence of temperature on the Casimir effect has
given rise to intense discussions over the last decade
[20,21], in particular, because the force exhibits an unex-
pectedly strong correlation with the detailed description of
optical properties of the metallic surfaces used in the
experiments. The dielectric function of metals is often
modeled by the plasma model where the plasma frequency
!P, depending on the density of conduction electrons, acts
as a cutoff frequency above which the reflectivity goes to
zero. In the Drude model which also accounts for the
relaxation of conduction electrons, the dielectric function

at imaginary frequencies ! ¼ i� is given by "ði�Þ ¼ 1þ
!2

P

�ð�þ�Þ , with the relaxation frequency � related to the

reduced dc conductivity �0 ¼ !2
P

� (see [22]). The plasma

model permittivity is obtained from the Drude model one
in the limit � ! 0, while the perfect reflector’s infinite
permittivity is recovered with the further limit !P ! 1.

While the dissipative Drude model seems a more appro-
priate description of metallic mirrors, it turns out that
recent force measurements are in better agreement with
the predictions of the lossless plasma model [1]. In addi-
tion, the Casimir force between two plates at large sepa-
rations turns out to be a factor of 2 smaller when calculated

with the Drude model compared to the one obtained with
the plasma or the perfect reflector model. This significant
difference is attributed to the vanishing contribution of TE
modes at zero frequency for dissipative mirrors entailing
that for the Casimir force, contrary to the dielectric func-
tion, there is no continuity from the Drude to the plasma
model at the limit of a vanishing relaxation [22]. In contrast
to the other two models, the Drude model also leads to
negative Casimir entropy values between two plates [23].
In the present Letter, we treat plane and spherical me-

tallic surfaces coupled to electromagnetic vacuum and
thermal fields with material properties described by either
the perfect reflector, plasma, or Drude models, and show
that the above mentioned features are considerably altered
in this situation. First, the factor of 2 between the long
distance forces in Drude and plasma models is reduced to a
factor of 3=2 decreasing even more below this value when
small spheres are considered. Second, negative entropies
are found also for the perfect reflector model, in which case
they can only be related to the plane-sphere geometry and
not to dissipation. Finally, PFA underestimates the Casimir
force within the Drude model for short distances, while it
overestimates it at all distances for the perfect reflector and
plasma model.
We consider a large parameter space generated by the

five length scales involved in the problem: the surface
separation L, the sphere radius R, the thermal wavelength
�T ¼ @c=kBT at temperature T, the plasma wavelength
�P ¼ 2�c=!P, and the wavelength associated with relaxa-
tion frequency �� ¼ 2�c=�. The general scattering for-

mula [24] for the Casimir free energy F between a plane
and a sphere is given by

F ¼ kBT
X0

n

logdetð1�Mð�nÞÞ; �n ¼ 2�nkBT

@

Mð�nÞ � RSð�nÞe�Kð�nÞLRPð�nÞe�Kð�nÞL: (1)

According to (1), the operator M contains the reflection
operators RS and RP of the sphere and the plane, respec-
tively, the latter being evaluated with reference points
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placed at the sphere center and at its projection on the

plane, as well as the translation operators e�Kð�nÞL de-
scribing one-way propagation between the reference points
on a distance L ¼ Lþ R; the primed sum is a sum over
the Matsubara frequencies �n (n � 0) with the n ¼ 0 term
counted for a half.

The upper expression is conveniently written through a
decomposition on suitable plane-wave and multipole
bases. The resulting elements of the matrix RP are pro-
portional to the Fresnel reflection coefficients rp with p ¼
TE and TM for the two electromagnetic polarizations,
while those of RS are proportional to the Mie coefficients
a‘, b‘ [25] for electric and magnetic multipoles at order
‘ ¼ 1; 2; . . . ; respectively. Because of rotational symmetry
around the z axis, each eigenvalue of the angular momen-
tum m gives a separate contribution to the Casimir free

energy F ðmÞ, obtained through the same formula as (1),

with M reduced to the block matrix MðmÞ collecting the
couplings for a fixed value of m. The numerical computa-
tions presented below are done after truncating the vector
space at some maximum value ‘max of the orbital number
‘. The results are thus accurate only for R=L smaller than
some value which increases with ‘max, typically R=L < 10
for our ‘max ¼ 34, remaining a factor of 10 below current
experimental values R=L > 102.

The results of the numerical computations are shown on
Fig. 1 for perfect reflectors. We have calculated the
Casimir force Fperf between the plane and the sphere at
ambient temperature and then plotted the ratio #perf of this
force to its value at zero temperature:

FperfðL; TÞ � �@F perf

@L
; #perf � FperfðL; TÞ

FperfðL; 0Þ : (2)

The various solid curves are drawn for different radii R of
the sphere as a function of the distance L, with increasing
values of R from bottom to top; the upper dashed curve on

Fig. 1 represents the quantity #
perf
PFA as it would be obtained

from (2) by using PFA ; the lower dotted curve is an
analytical asymptotic expression discussed below.
Figure 2 shows the variation of the ratio#Drud, defined as

in (2) for the Drude model with �P ¼ 136 nm, ��=�P ¼
250, and �T ¼ 7:6 �m. The dashed curve on Fig. 2 rep-
resents #Drud

PFA as obtained for the Drude model by using
PFA. We do not plot the variation of #plas, defined as in (2)
for the plasma model, since it is as expected quite close to
the one shown on Fig. 1 for perfect mirrors.
In most cases, the ratio #, starting from unity at small

distances, decreases below unity when the distance in-
creases, then reaches a minimum before increasing at
very large distances. While such behavior was already
observed for dissipative Drude mirrors in the plane-plane
geometry [21,23] (the dashed PFA curve on Fig. 2 is also
below unity for L & 4 �m), or in the atom-surface con-
figuration out of equilibrium [26], our computations show
quite unexpectedly that in the sphere-plane geometry such
a behavior takes place even for the perfect reflector and
plasma models at thermodynamical equilibrium. Hence,
for all three models the contribution of the thermal photons
to the Casimir force can be repulsive, which suggests that
the entropy could be negative for some values of the
parameters (see below).
A second important feature comes out in a striking

manner from the comparison of Figs. 1 and 2: the PFA
always overestimates the effect of temperature on the force
between mirrors described by a perfect reflector or plasma
model; in contrast, it underestimates the temperature effect
for the Drude model at small distances, while it overesti-
mates it at large distances. The overestimation is, however,
smaller than for perfect mirrors. As a consequence, for
small separations the Drude and plasma models lead to
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FIG. 1 (color online). Thermal Casimir force at T ¼ 300 K
computed between perfectly reflecting sphere and plane, divided
by the zero temperature force. Solid lines from bottom to top
correspond to increasing values of sphere radii. The upper
dashed curve represents the PFA expression while the lower
dotted curve is the analytical asymptotic expression in the L �
R limit.
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FIG. 2 (color online). Same plot as in Fig. 1 for the Casimir
force at T ¼ 300 K computed with the Drude model, divided by
its value at zero temperature. The dashed curve correspond to the
PFA expression.
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Casimir force values much closer than predicted by PFA.
These results clearly demonstrate the strong correlation
between the effects of plane-sphere geometry, temperature
and dissipation.

In the following we will corroborate the previous nu-
merical results by presenting analytical calculations of the
thermal Casimir energy in the limit of large distances
(L � R). Since the number of modes ‘max needed to get
an accurate result decreases when L=R increases, we may
take ‘max ¼ 1 in this limit. Another consequence of this

limit is that the reduced frequency ~� � �R=c is very small,
since the characteristic frequencies, which give the main
contribution to the Casimir force, scale as �� c=L.

For perfect reflectors, where �P ¼ 0, the dielectric func-
tion " is infinite at all frequencies and we obtain the
following low-frequency expansions for the Mie coeffi-
cients a1 and b1 describing the scattering on the sphere:

a
perf
1 ¼ � 2~�3

3
; b

perf
1 ¼

~�3

3
: (3)

The other steps in the calculation of the Casimir force may
then be done analytically and the sum over all Matsubara
frequencies may be given in a closed form. One obtains in
this manner the following approximation of the Casimir
free energy:

F perf ¼ � 3@cR3

4�TL
3
�ð�Þ; � � 2�L

�T

;

�ð�Þ � � sinh�þ cosh�ð�2 þ sinh2�Þ
2sinh3�

; L � R:

(4)

The fact that the upper expression is a relevant approxi-
mation is shown on Fig. 1: the lower dotted curve, repre-
senting the value of the ratio #perf deduced as in (2)
through a derivation of expression (4), is close to curves
computed for small radii R � L. Using (4), it is straight-
forward to derive an analytical expression of the entropy
S � �@F =@T:

Sperf ¼ 3kBR
3

4L3
ð�ð�Þ þ ��0ð�ÞÞ; L � R; (5)

which gives negative values for � & 1:5, that is L &
1:8 �m at T ¼ 300 K.

In addition, we can derive from (4) low- and high-
temperature expressions for the free energy:

F perf ’ � 9@cR3

16�L4

�
1� �4

135
þ 4�6

945

�
; �T � L � R;

F perf ’ � 3@cR3

8�TL
3
; L � �T; R: (6)

Equation (6) is the large-distance high-temperature limit
which can be generalized to metallic scatterers described
by either the plasma or the Drude model. Starting with the
lossless plasma model (� ¼ 0) we obtain for L � �P

Fresnel coefficients with unit modulus rTE � �1, rTM �
1, while the low-frequency expansion of the Mie coeffi-
cients [27], and the resulting free energy, are read, intro-
ducing the parameter 	 � 2�R

�P
:

a
plas
1 ’ � 2~�3

3
; b

plas
1 ’

�
1

3
þ 1

	2
� coth	

	

�
~�3;

F plas ’ � 3@cR3

8�TL
3

�
1þ 1

	2
� coth	

	

�
; L � �T; R:

(7)

The result for perfect reflection is reproduced by (7) when
both L, R � �P.
For the dissipative Drude model (� � 0), the low-

frequency limit of the two Fresnel coefficients have the
well-known form rTE ! 0, rTM � 1. The low-frequency
expansion of the Mie coefficients and the ensuing free
energy are read

aDrud1 ’ � 2~�3

3
þ c~�4

�0R
; bDrud1 ’ �0R~�4

45c
;

F Drud ’ � @cR3

4�TL
3
; L � �T; R:

(8)

The long distance free energy for the Drude model
amounts to 2

3 of the value for perfect mirrors whereas this

ratio is 1
2 in the plane-plane geometry. The latter result is

explained by the fact that the TE reflection coefficient
vanishes at zero frequency so that only the TM modes
contribute [20,21]. The change of the ratio 1

2 to 2
3 in the

plane-sphere geometry has to be attributed to the redistrib-
ution of the TE and TM contributions into electric and
magnetic spherical eigenmodes.
Formally the results for the Drude model (8) can be

obtained from the plasma model results (7) by taking the
limit R � �P. In this limit, however, we should take into
account the effect of quantum confinement in the small
sphere, which is out of the scope of the present Letter. Two
further features in (8) must be emphasized. First, the
coefficient b1 is vanishingly small in the Drude model
but not in the plasma model; the latter can thus not be
obtained by turning the relaxation frequency � to zero (or
�0 to 1). In addition, the free energy for the Drude model
is independent of the values of �P and �, whereas the one
for the plasma model depends on �P.
On Fig. 3, we illustrate the comparison of the two

models by plotting the ratio of the thermal Casimir forces
Fplas calculated with the plasma model and FDrud obtained
with the Drude model. Again, the plots correspond to �P ¼
136 nm and ��=�P ¼ 250. The results of our calculations

are shown by the solid curves with the sphere radius
increasing from bottom to top as in Fig. 1. The ratio
Fplas=FDrud varies in the plane-sphere geometry as a func-
tion of the sphere radius, which clearly demonstrates the
strong interplay between the effects of temperature, dis-
sipation and geometry. For large spheres (R � �P), the
ratio converges at long distances to the value 3=2which has
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been obtained analytically in the preceding paragraphs,
whereas it remains smaller for small spheres (down to
1.2 for R� 100 nm). The dashed curve gives the variation
of the same ratio as calculated within the PFAwhich leads
to a factor of 2 in the limits of large distances or high
temperatures. We emphasize that the factor of 2 deduced
within PFA is never approached at the large-distance limit
within the calculations performed in the plane-sphere
geometry.

To summarize we have computed exact results for the
Casimir free energy and force at nonzero temperature in
the plane-sphere geometry. We have given plain evidence
for a strong correlation between the effects of geometry,
temperature, and dissipation based on the perfect reflector,
plasma, and Drude model to describe material properties.
The correlation becomes clearly visible in the relative
approaching of the Casimir force values computed with
the Drude and plasma model, the appearance of negative
entropies evidently not related to the presence of dissipa-
tion and the fact that PFA underestimates the Casimir force
for the Drude model at short distances while it overesti-
mates it for the plasma model. If the latter feature were
conserved for the experimental parameter region R=L
(>102), the actual values of the Casimir force calculated
within plasma and Drude model could turn out to be closer
than what PFA suggests, eventually diminishing the dis-
crepancy between experimental results and predictions of
the thermal Casimir force using the Drude model. Settling
this question is an open and highly topical program in
Casimir physics.

The authors thank G.-L. Ingold for many fruitful dis-
cussions, CAPES-COFECUB and the French Contract
No. ANR-06-Nano-062 for financial support, and the
ESF Research Networking Programme CASIMIR [28]
for providing excellent opportunities for discussions on

the Casimir effect and related topics. P. A.M.N. thanks
CNPq and Faperj for financial support.
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FIG. 3 (color online). Ratio of thermal Casimir force at T ¼
300 K calculated with the plasma model and the Drude model,
as a function of surface separation L for different radii of the
sphere. The solid curves from bottom to top correspond to
increasing values of sphere radii. The dashed curve is the PFA
prediction.
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