
Bath-Optimized Minimal-Energy Protection of Quantum Operations from Decoherence

Jens Clausen, Guy Bensky, and Gershon Kurizki

Department of Chemical Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
(Received 23 September 2009; published 25 January 2010)

We put forward a general strategy for dynamic control that ensures bath-optimized fidelity of a desired

multidimensional quantum operation in the presence of non-Markovian baths and noises with stationary

autocorrelations. It benefits from the vast freedom of arbitrary, not just pulsed, time-dependent control.

This allows the dramatic reduction of the invested energy and the corresponding error compared to pulsed

control.
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Introduction.—The quest for strategies for combating
decoherence is of paramount importance to the control of
open quantum systems, particularly for quantum informa-
tion operations [1]. A prevailing unitary strategy aimed at
suppressing decoherence is dynamical decoupling (DD)
[2–4], which consists, in the case of a qubit, in the appli-
cation of strong and fast pulses alternating along orthogo-
nal Bloch-sphere axes, e.g., X and Z. In the frequency
domain, where the decoherence rate can be described as
overlap between the spectra of the pulse-driven (modu-
lated) system and the bath [5], DD is tantamount to shifting
the driven-system resonances beyond the bath cutoff fre-
quencies. DD control is inherently pulsed, although it can
invoke bandwidth considerations for pulses to maximize
the speed and fidelity of quantum gate operations [2,3].

Here we put forward an altogether different universal
strategy: bath-optimal minimal-energy control (BOMEC)
of multidimensional quantum operations subject to any
given noise or bath with stationary autocorrelations. It
draws upon the vast additional freedom of arbitrary (not
just pulsed) Hamiltonian time dependence. This allows the
reduction (by orders of magnitude) of the invested energy
compared to pulsed control. This approach ensures bath-
optimized effective decoherence control under constraints
imposed by the non-Markov bath response. It tackles the
fidelity deterioration with control energy, a key effect that
has been hitherto unexplored. The price we pay is the need
for at least partial knowledge of the bath or noise spectrum,
which is experimentally accessible [6] without the need for
microscopic models. In this sense, BOMEC is a major
generalization of dynamic control by modulation devel-
oped for qubit dephasing [7].

Gate error.—We assume that the system Hamiltonian

ĤSðtÞ implements a desired quantum gate operation at time
t, and aim at designing it so as to minimize the decoherence

and noise errors [2,3]. The system-bath interaction ĤI then
acquires time dependence in the interaction picture under

the action of ĤSðtÞ and the bath Hamiltonian ĤB.
Assuming factorized initial states of the system and the
bath, %̂totð0Þ ¼ %̂ð0Þ � %̂B, tracing over the bath, and fur-

ther assuming that TrBðĤI%̂BÞ ¼ 0̂, TrSĤI ¼ 0̂ yields for

the system state %̂ðtÞ the following deviation from the
initial state in the interaction picture [8]

%̂ðtÞ ¼ %̂ð0Þ � �%̂ðtÞ;
�%̂ðtÞ ¼

Z t

0
dt1

Z t1

0
dt2TrB½ĤIðt1Þ; ½ĤIðt2Þ; %̂totðt2Þ��:

(1)

In what follows, we assume that up to t, the combined

system-bath state changes only weakly compared to ĤI, so
that we approximate in (1) %̂totðt2Þ � %̂totð0Þ in the integral.
This means that the control is assumed effective enough to
allow only small errors, consistently with the second order
approximation of both the Nakajima-Zwanzig and the
time-convolutionless non-Markov master equations [9,10].
To justify this assumption, we try to reduce the discrep-

ancy between the states evolved for time t in the presence
and absence of the bath by minimizing h�%̂ðtÞi �
h�j�%̂�ðtÞj�i averaged over all initial states %̂�ð0Þ ¼
j�ih�j. For a d-level system this averaging yields our
measure of decoherence (error) in the form [8,11]

h�%̂ðtÞi ¼ 2�Re
Z t

0
dt1

Z t1

0
dt2hĤIðt1ÞĤIðt2ÞiSB

¼ �

��Z t

0
dt1ĤIðt1Þ

�
2
�
SB
; (2)

where � ¼ 1� ðdþ 1Þ�1, h�iSB ¼ d�1TrSB½ð�Þ%̂B�.
Equation (2) provides a fundamental insight: the

ensemble-averaged error h�%̂ðtÞi is proportional to the
mean square of the system-bath interaction energy in the
(instantaneous) interaction picture. For worst-case error
minimization cf. [8].

Since our aim is to suppress h�%̂ðtÞi by system manipu-
lations alone, we now separate system and bath parts by
decomposing any interaction Hamiltonian in an appropri-
ate orthogonal basis as

Ĥ I ¼
Xd2�1

j¼1

B̂j � Ŝj; (3)

where Ŝj are the system (traceless) basis operators obeying

TrðŜjŜkÞ ¼ 2�jk and B̂j are bath operators that satisfy
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hB̂jiB ¼ TrBðB̂j%̂BÞ ¼ 0 and carry no explicit time depen-

dence. For every Ŝj basis there exists a unique decompo-

sition of the system-bath Hamiltonian in this form. In the
interaction picture

B̂ jðtÞ ¼ eiĤBtB̂je
�iĤBt; ŜjðtÞ ¼ ÛyðtÞŜjÛðtÞ; (4)

where ÛðtÞ ¼ Tþe
�i
R

t

0
dt0ĤSðt0Þ. We shall minimize h�%̂ðtÞi

for a given, experimentally accessible [6], bath correlation
matrix �ðtÞ defined as

�jkðtÞ ¼ hB̂jðtÞB̂kiB; (5)

by searching for an appropriate system-modulation matrix
�ðtÞ defined as

�jkðtÞ ¼ 1
2 Tr½ŜjðtÞŜk�; (6)

which describes the rotation of the system basis due to the

modulation: ŜjðtÞ ¼
P

d2�1
k¼1 �jkðtÞŜk.

It is expedient to define the decoherence matrix

Rðt1; t2Þ ¼ �Tðt1Þ�ðt1 � t2Þ�ðt2Þ (7)

as a matrix product obeying Ryðt1; t2Þ ¼ Rðt2; t1Þ. This
decoherence matrix, transformed to the instantaneous ro-
tating frame, is at the heart of the treatment.

By algebraic manipulations, we can rewrite (2) as

h�%̂ðtÞi ¼ 2
�

d

Z t

0
dt1

Z t

0
dt2TrRðt1; t2Þ: (8)

Alternatively, we can express (8) as

h�%̂ðtÞi ¼ 4t
�

d

Z 1

0
d!Tr½Gð!ÞFtð!Þ�; (9)

where Gð!Þ ¼ R1
�1 dtei!tRe�ðtÞ, Ftð!Þ ¼

t�1�tð!Þ�tyð!Þ, and �tð!Þ ¼ ð1= ffiffiffiffiffiffiffi
2�

p ÞRt
0 d�e

i!��ð�Þ.
Hence, the error is the spectral overlap of two matrix-
valued functions: the bath-coupling spectral matrix Gð!Þ,
and the finite time system-modulation spectral matrix
Ftð!Þ [cf. (7)]. In (9) we have made use of the fact that
�ð�tÞ ¼ �yðtÞ, so that it is sufficient to integrate over
positive frequencies.

Equation (9) constitutes a generalization of the ‘‘univer-
sal formula’’ [5] to arbitrary multidimensional systems and
baths. It provides a major insight: the system and bath
spectra (all matrix components) must be anticorrelated;
i.e., Gjkð!Þ minima must coincide with ðFtÞjkð!Þ maxima

and vice versa to minimize the mean error (9), as illustrated
below. Certain components Gjkð!Þ, ðFtÞjkð!Þ may be

negative or complex. This may allow us to ‘‘destructively
interfere’’ their contributions, i.e., engineer
‘‘decoherence-free’’ subspaces [12]. These prospects of
our general approach can be used for entanglement pro-
tection [13].

Decoherence minimization.—Our goal is to find a sys-

tem Hamiltonian ĤSðtÞ, 0 � t � T, implementing a given

unitary gate ÛðTÞ at a fixed time T. This requires minimiz-
ing the bath-induced state error (2) or (8) in the interaction

picture under ĤSðtÞ. We may similarly account for the
effects of modulation or control noise, in addition to bath
noise [8].
The major difficulty in minimizing (8) using (4)–(6) is

that (4) involves time-ordered integration for noncommut-
ing control operators along different axes. To circumvent

this difficulty, we use ÛðtÞ as our basic object instead of

ĤSðtÞ, and assume a parametrization Û½flðtÞ; t� in terms of
a set of real parameters flðtÞ, which we combine to a vector
fðtÞ. The boundary values fð0Þ and fðTÞ should be such

that Ûðt ¼ 0Þ ¼ Î and Ûðt ¼ TÞ is the desired gate.
If the bath-coupling spectrum Gð!Þ vanishes (has cut-

off) at any high frequency, the overlap (9) can be presumed
arbitrarily small under sufficiently rapid modulation of the
Hamiltonian, such that all components of Ftð!Þ are shifted
beyond this cutoff, thus achieving DD [2–4]. Yet this may
require a diverging system energy. A consideration seldom
taken into account is that fidelity generally drops with
modulation energy, as discussed below. We therefore im-
pose an energy constraint on the modulated system

ES ¼
Z T

0
dt1hĤ2

Sðt1ÞiS ¼ const; (10)

where h�iS ¼ d�1TrSð�Þ [cf. (2)]. An alternative constraint

E ¼
Z T

0
dt1j _fðt1Þj2 ¼ const (11)

is on the bandwidth: E accounts for the fact that the time
dependence of a parametrization cannot be arbitrarily fast
and hence bounds the modulation energy ES.
The minimization of (8) subject to (11) is an extremal

problem in terms of the controls f . The stationary condi-

tion can be formulated in terms of a Lagrange multiplier �

as � h�%̂ðtÞiþ��E ¼ 0, where � is the total variation with
respect to f . Then, using the parametrization rt1 � f @

@flðt1Þg
in R [Eq. (7)], yields the Euler-Lagrange equation

€fðt1Þ ¼ �gðt1Þ; gðt1Þ �
Z T

0
dt2rt1Re TrRðt1; t2Þ;

(12)

where � is related to the constraint (11) on E [8].
We conclude the general treatment by recapitulating on

the steps to find the optimal modulation of ĤSðt1Þ: (i) After
choosing the gate time T and gate operation ÛðTÞ, we
declare a set of parameters f controlling the evolution,

such that ÛðtÞ ¼ Û½fðtÞ; t� which induces the instanta-

neous rotation matrix �½fðtÞ; t�. We can now calculate

Rðt1; t2Þ as a functional of f via (4)–(6), using our knowl-

edge of the bath (5). (ii) We now solve the Lagrange
Eq. (12) for a given � using the boundary conditions, and

calculate the error h�%̂ðTÞi. (iii) The optimization is re-
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peated for different values of � and ES in (10) is calculated
for each solution. Among all solutions for which the error
falls below a desired threshold value, we choose the one
corresponding to the lowest ES. (iv) The chosen solution

fðtÞ is inserted into Û½fðtÞ; t�, yielding the instantaneous

Hamiltonian

Ĥ SðtÞ ¼ i _̂UðtÞÛyðtÞ ¼ X
j

!jðtÞŜj: (13)

Application to a qubit.—To apply the general procedure

to a qubit for which Ŝj ¼ �̂j (j ¼ X, Y, Z) in (13), we

resort to the Euler rotation-angle parametrization,

ÛðtÞ ¼ e�ði=2Þf3ðtÞ�̂3e�ði=2Þf2ðtÞ�̂2e�ði=2Þf1ðtÞ�̂3 :

In (13),!3ðtÞ is now the level splitting, whereas!1ð2ÞðtÞ are
Rabi flipping rates. We choose two examples of uncorre-
lated baths (i.e., diagonal �), namely, an Ohmic bath with
different cutoffs in X, Y, Z, and a Lorentzian noise spec-
trum superposed with a second Lorentzian such that a
spectral ‘‘hole’’ is obtained at different frequencies in X,

Y, and Z. The corresponding bath-coupling spectra are
shown in Fig. 1, along with our optimized modulation
spectra, which are contrasted with DD pulse-sequence
spectra.
The minimized gate error is shown in Fig. 2 as a function

of the energy constraint (10) for both baths. Its comparison
with the gate error obtained using various DD pulse se-
quences reveals two differences. The first concerns the
energy scale: in rectangular DD pulse sequences, each
� pulse of duration � contributes an amount �2=ð4�Þ to
(10), defining the basic energy scale of the DD method.
This energy scale diverges for ideal pulses, � ! 0. By
contrast, our approach assumes finite, much (2 orders of
magnitude) smaller ES. The second difference concerns
energy monotonicity: DD sequences are designed a priori,
regardless of the bath spectrum, and hence only signifi-
cantly reduce the gate error if ES has risen above some
threshold which is needed to shift all system frequencies
beyond the bath cutoffs [4]. In contrast, our approach starts
to reduce the gate error as soon as ES > 0, since it opti-
mizes the use of the available energy, by anticorrelating the
modulation and bath spectra.
We next consider the gate fidelity limitations as a func-

tion of the control energy ES posed by leakage [14] to
levels outside the relevant subspace (here a qubit). In a
three-level � system, any off-resonant control field acting
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FIG. 1 (color online). Spectral overlaps between bath spectra
Gið!Þ (solid red), modulation spectra FOPT

i ð!Þ (dashed green)

for an optimized (BOMEC) storage (identity, 0) gate at ES ¼
130:5 [(a),(b),(c)], and ES ¼ 181:1 [(d),(e),(f)], respectively, and
modulation spectra FQDD

i for pulse sequences [3] QDD4 [(a),(b),

(c)] and QDD3 [(d),(e),(f)] (dotted blue), with i ¼ 1, 2, 3
corresponding to X, Y, and Z component, respectively. Graphs
(a),(b),(c) represent an Ohmic bath spectrum with softened cut-
off, whereas graphs (d),(e),(f) represent a Lorentzian spectrum
with a dip. The optimal (BOMEC) modulation spectra FOPT

i ð!Þ
are always anticorrelated with the bath spectra Gið!Þ. By con-
trast, the DD pulse-sequence spectra are only anticorrelated with
Gi for Ohmic baths (a),(b),(c) but not for the bath spectra (d),(e),
(f). The same is true for CUDD sequences [4].
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FIG. 2 (color online). Qubit gate error h�%̂ðtÞi scaled to un-
modulated error, as a function of the energy constraint ES in
units of the energy scale of each method (see text). Solid
magenta (dashed green): optimized (BOMEC) storage (identity,
B0) and flip (B�) gates, Solid blue: periodic X-Z ‘‘bang bang’’
(2; 4; . . . ; 30 pulses). Separate points: DD pulse sequences [3,4].
(a) and (b) correspond to bath spectra shown on the left and right
in Fig. 1. The energy scale of DD (top) is more than 2 orders of
magnitude higher than that of BOMEC (bottom).
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on the qubit levels j1i, j2i, causes leakage to the unwanted
level j3i [15]. Such leakage and the ensuing incoherent
decay j3i ! j2i incur gate errors that grow with the control
energy ES. This behavior is illustrated in Fig. 3, which
reveals that leakage error is more dramatic the more ener-
getic the �-pulse sequences are. This, along with the
general expressions for ensemble-averaged error (2) and
(9) and its minimization (12) are our main results.

Conclusions.—A universal bath-optimal minimal-
energy control (BOMEC) of multidimensional decoher-
ence has been introduced and shown to be a powerful
tool, capable of facilitating new implementations of coher-
ent control and quantum information processing. The
analysis has yielded several conceptual innovations:
(a) We have expressed an arbitrary gate error as the mean
system-bath interaction energy. (b) Its multidimensional
minimization has been expressed as the spectral overlap
between the driven-system and the bath spectra. This for-
mulation overcomes the long-standing conceptual obstacle
of simultaneously controlling noncommuting system op-
erators subject to noise along orthogonal axes. (c) Our
Euler-Lagrange equation and its solution maximize the
gate fidelity by anticorrelating the system and non-
Markovian bath spectra. Hence, while DD-based methods
rely on shifting the entire spectrum of the system beyond
that of the bath, our approach takes advantage of com-
monly encountered gaps or dips of bosonic- or certain
realistic spin-bath spectra [16–18]. Consequently
BOMEC can be orders of magnitude lower in terms of
energy investment than DD-based methods. Such energy

saving may yield much higher fidelity, as excessive ener-
gies lead to leakage into additional levels [14,15], or
increase the control noise [6]. By virtue of its generality,
the present formulation may be expanded to quantum in-
formation tasks such as entanglement protection and ma-
nipulation under both local and global decoherence [13].
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[17] Z. Lü and H. Zheng, J. Chem. Phys. 131, 134503 (2009).
[18] N. V. Prokof’ev and P. C. E. Stamp, Rep. Prog. Phys. 63,

669 (2000).

0 20 40 60 80 100

0.1

0.2

0.3

0.4

0.5

0.6

0 1.5 3.0 4.5 6.0 7.5 · 104 (DD)

(BOMEC)

FIG. 3 (color online). Relative surplus error h�%̂ðtÞirel ¼
ðh�%̂ðtÞiwith � h�%̂ðtÞiwithoutÞ=h�%̂ðtÞiwithout incurred by the in-
evitable leakage to the additional level j3i (inset) caused by
the control as a function of the energy ES, i.e., error with
allowance for leakage compared to the error without (disregard-
ing) leakage. Solid magenta: optimized (BOMEC) storage (iden-
tity, B0) gate. Dashed blue: periodic X-Z ‘‘bang bang’’
(2; 4; . . . ; 30 pulses) and QDD as shown in Fig. 2(a) and a bath
spectrum as shown in Fig. 1 (left). A (truncated) 1=! bath-
coupling spectrum describes an amplitude coupling between
levels j2i and j3i (leakage). The scales of ES are as in Fig. 2.
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