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We propose a simple model to describe spider orb webs. The model has a formal analytical solution

when no thread elements are broken. When the radial threads are sufficiently strong compared to the spiral

threads, the model is free of stress concentrations even when a few spiral threads are broken. This is in

contrast with what occurs in common elastic materials. According to our model, spiders can increase the

number of spiral threads to make a dense web (to catch small insects) or adjust the number of radial

threads (to adapt to environmental conditions or reduce the cost of making the web) without reducing the

damage tolerance of the web.
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Although the orb web of a spider is a lightweight struc-
ture [1], it seems to be a highly optimized structure,
presumably as a result of evolution from the Jurassic period
or earlier [2]; it seems to resist different loads such as wind
and insect impact efficiently and can catch prey even if
some threads are broken. There are many studies on spider
silk as a high-performance polymeric fiber, e.g., in terms of
entropic elasticity [3], water coating [4], breaking strength
[5], gene family [6], various structural features such as
liquid-crystalline [7], micellar [8], and hierarchical [9]
structures, and torsional relaxation [10]. However, very
little is known of the structural mechanical properties of
spider webs although there are a few studies on vibration
[11,12], tensile prestress [13], and detailed finite-element
modeling [12,14]. Here, we propose a model for the orb
web, which is simple enough to allow an analytical solu-
tion. The model highlights the mechanical adaptability of
the web, providing simple but comprehensible physical
understanding of its static properties. We stress in this
study the importance of the maximum force appearing in
the system as a crucial factor for the web’s toughness (or
damage tolerance) when the web is subject to an extra
stress due to wind or prey impact. This is because materials
are commonly weakened by a strong force appearing at a
fracture tip, i.e., a stress concentration [15]. In this Letter,
we concentrate on orb webs although there are many
varieties of web [16]. This is because the orb web is the
most familiar form and presents universal structural fea-
tures that are conserved across species, which suggests that
it has benefited from natural selection to become
adaptable.

We consider a two-dimensional (2D) orb web consisting
of N radial threads and M spiral threads. The nodes where
threads are linked are labeled by a set (n;m) as in Fig. 1 and
their position is denoted by a 2D vector Xn;m where n ¼
0; 1; 2; . . . ; N � 1 and m ¼ 1; 2; . . . ;M, where Xn;0 ¼
ð0; 0Þ (independent of n). The ðn;mÞ element of the radial
and spiral threads connects two adjacent nodes Xn;m and

Xn;m�1 and another set of adjacent nodesXn;m andXn�1;m,

respectively. The natural length of all ðn;mÞ radial threads
is equal to L while that of the ðn;mÞ spiral thread lm
depends on m because of geometrical restrictions:

lm ¼ �mL � 2mL sinð�=NÞ: (1)

In other words, without any tension the node positions are
given in ð�; rÞ coordinates by

X n;m ¼ ð2n�=N;mLÞ: (2)

The spring constant of the radial thread is independent of
the element and denoted �K ¼ K=L while that of the spiral
thread depends on the m label and is denoted �km ¼ k=lm
since the spring constant is inversely proportional to the
natural length. Since radial threads are stronger than spiral
ones [14] we are mainly interested in the case where K >
k. In addition, we define Fn;m and fn;m as the magnitude of

the force acting on the ðn;mÞ radial and spiral threads,
respectively.
It is known that an orb web is under tension when

completed by a spider [13]. To mimic this situation, we
expand the model web introduced as above from the origi-
nal unstretched state to a homogeneously stretched state by
setting the r coordinate of the peripheral node Xn;M to

MLþ� (independent of n). We regard this state as a real
spider web (under tension) without any damage (we cut
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FIG. 1. Model of orb web of spider consisting of 10 radial
threads and 4 spiral threads (N ¼ 10, M ¼ 4), which are labeled
as above. See the details in the text.
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some of the springs below to simulate damage). In such a
state, both Fn;m and fn;m are dependent not on n but onm as

made clear from a symmetry argument. They are denoted
Fm and fm, respectively, and in addition satisfy the rela-
tions

Fmþ1

�kmþ1

¼
�

1
�kmþ1

þ 1
�km

þ �2

K

�
Fm � Fm�1

�km
(3)

Fmþ1 ¼ Fm þ �fm (4)

with the initial conditions

F1 ¼ �K�L; f1 ¼ � �k1�L: (5)

Here,�L is the elongation of the first radial thread attached
to the node Xn;1. The recurrence relation in Eq. (3) be-

tween three adjacent terms can be solved formally by using
a continued fraction [17]. Exact numerical estimation of
the continued fraction in this case requires only a simple
numerical iteration calculated in a second on a personal
computer (PC) although a number of calculation schemes
have been developed in general cases.

To study the static state of the web with damage, we
developed a numerical code to calculate the static state of
the present web model by extending the code used in [18]
because the numerical iteration of Eqs. (3) and (4), with an
appropriate condition describing the damage, does not
work unless we allow the approximation of the fixed
node points; we solved the equation of motion dXn;m=dt ¼
��Fn;m to seek the equilibrium state where Fn;m is the

total force acting on the node Xn;m from the four springs

attached to the node (see details in [18]), where the calcu-
lation is completed in around 10 min on a PC.

The typical values of the diameter, elastic modulus, and
the initial tension of radial spider silks are of the order of
1 �m, 1 GPa, and 0.1 mN [14], respectively, which implies
an initial strain about 0.1 and �K about 1 N=m if L is about
1 mm. Our numerical results can be interpreted as, for
example, the case where �K ¼ 1 N=m, L ¼ 1 mm, � ¼
1 mm [a characteristic strain " ¼ �=ðMLþ�Þ is 1=ðMþ
1Þ] and the unit of the force �K� ¼ 1 mN, while the case
with a smaller strain can be obtained, e.g., simply by
putting that� ¼ 0:1 mm and �K� ¼ 0:1 mN [in numerical
calculations we set �K ¼ L ¼ � ¼ 1, which implies that
the characteristic force �K"L is 1=ðMþ 1Þ in the unit of
�K� ¼ 1]. The numbers of radial and spiral threads of the
web are N ¼ 10 and M ¼ 9 in the numerical results given
below, if they are not specified explicitly. Typical values of
K and k can be given as the elastic modulus multiplied by
the thread’s section area: K ¼ 31:5 mN and k ¼ 2:26 mN
from Table 1 in [14], which implies that K=k is 14 (of the
order of 10). One structural reason for this high ratio is that
radial threads are thicker than spiral ones although differ-
ences in chemical composition and in microscopic struc-
ture are also important [14].

The results of the force distribution in an undamaged
web are shown in Fig. 2, where two cases with different

K=k ratio are compared. The threads with the maximum
force are the radial threads located at the outermost posi-
tions. This is understood from Eq. (4): by iteration of this
equation we see that Fmþ1 is given as the summation of
F1; F2; . . . ; Fm and f1; f2; . . . ; fm with positive coeffi-
cients. Physically speaking, forces on thread elements are
accumulated towards peripheral radial threads in this
model. In addition, we see in Fig. 2 that by making the
ratio K=k larger, as in the actual spider web, we can reduce
the maximum force appearing in the web. This can again
be understood physically; for example, if we consider the
limit where no spiral threads are present, the force accu-
mulation from f1, f2; . . . ; fm is suppressed so that we
expect a weaker force on the radial threads.
The above force distribution is quantified more explic-

itly in the left-hand plot in Fig. 3 where we have plotted the
maximum force F0 appearing in the system (or acting on
the outermost radial spring) as a function of the ratio K=k.
It is interesting that the maximum force drops sharply to an
asymptotic value with the ratio and it almost reaches the
asymptotic value when the ratioK=k is about 10, which is a
typical value for real spider webs as mentioned above.
The dependence of the maximum force F0 on the num-

ber of radial threads N in a web made up of 9 spiral threads
is shown in the middle plot in Fig. 3 for two values of K=k.
We see that a spider can reduce the maximum force by
increasing N. However, this tendency is less when K=k
reaches a typical value (around 10) for real spiders’ webs.
As a result, a spider can select the number of radial threads
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FIG. 2 (color online). Force distribution for undamaged webs
(left) for K=k ¼ 1 and (right) for K=k ¼ 10. The right-hand plot
corresponds to natural spider webs. Note that the maxima of the
color scale are different in the two plots where the values are
given in �K�.
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FIG. 3. The maximum force F0 (in �K�) appearing in the
system as a function of the ratio K=k where N ¼ 10 and
M ¼ 9 (left), as a function of the number of radial threads N
for two values of K=k where M ¼ 9 (middle), and as a function
of the number of spiral threads M for two values of K=k where
N ¼ 10 (right).
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N without reducing the strength of the web (i.e., with the
maximum force appearing in the web changed only
slightly). This is a preferable property if we consider the
work of making the web for a spider and the adaptability of
a spider to make the web in various environments.

The dependence of the maximum force F0 on the num-
ber of spiral threads M is shown in the right-hand plot in
Fig. 3 for two values of K=k. Here, the size of the web is
fixed to the same by settingXn;M to 9Lþ � and by adjust-

ing the radial spacing between the adjacent nodes. We see
that the maximum force increases with M. However, this
tendency is less when K=k reaches a typical value (around
10) for real spiders’ webs; this property is an advantage for
a spider that wishes to make the web denser to catch
smaller insects.

We discuss below the force distribution in the spider web
when one of the spiral threads is damaged (the stronger
radial threads are at less risk of damage). Specifically, we
compare the cases when either ð2; 5Þ or ð2; 8Þ spiral thread
is absent. In the top panel of Fig. 4 we compare the force
distribution when the spiral thread in the middle [i.e., ð2; 5Þ
spiral thread] is absent for three different values of K=k
where radial and spiral threads loaded with the maximal
force are indicated by arrows (the shorter arrows for the
spiral thread point to the spiral threads with the second
maximal force). We here find that the position of the thread
with the maximum force changes with K=k. This is com-
pletely different from usual elastic materials where the
maximum stress always appears near the tip [15]. This
abnormal behavior can be observed regardless of the posi-
tion of the damaged thread [see, as another example, the
bottom panels in Fig. 4 where the ð2; 8Þ spiral thread is
absent]. In addition, if we compare the maximum forces F0

and f0 in the radial and spiral threads with and without
damage, as in Fig. 5, we remarkably find that the maximum
forces change only slightly because of the damage. The
maximum force appearing in the spider web hardly
changes in spite of the damage, which is distinctly different

from usual elastic materials in which a crack causes severe
stress concentrations and weakens the material [15]. As a
matter of fact, the overall force distribution in a damaged
web forK=k ¼ 10 displayed in the middle column in Fig. 4
is very similar to the case without damage for K=k ¼ 10
illustrated in the right in Fig. 2. This feature of spider webs
implies that we have to pay attention only to the maximum
force appearing in the system in undamaged webs to dis-
cuss the strength of a web.
Other unusual features are demonstrated in Fig. 6 where

we plot the force F2;m acting on the ð2; mÞ radial threads in
the left and the force fn;i acting on the ðn; iÞ spiral threads
where ð2; iÞ spiral threads are absent in the right. We
observe no discernible change in the radial force although
the web is damaged. Furthermore, the spiral force tends to
relax as a whole with showing a maximum value at a
position opposite of that of the absent thread with respect
to the center. These behaviors are again completely differ-
ent from the usual elastic case in which a stress concen-
tration develops near the crack.
As seen above the force distribution in our model

changes little even if a spiral thread is broken. The damage
tolerant behavior in this sense is understood physically if
we go back to the argument developed when discussing
Fig. 2. In this model forces in spiral and radial threads are
accumulated towards the peripheral radial threads.
However, if the spiral thread is very soft this accumulation
mechanism does not work well: the web is composed
mainly of the radial threads and the spiral threads play
only a minor role. This is why the force distribution is
unchanged if we remove any spiral thread. Accordingly, if
we cut many spiral threads the web topology remains
similar with no stress concentration. We confirmed this
fact via direct numerical calculation. Note that, on the
contrary, removal of even one of the radial threads brings
about a significant change in topology of the nodes; as a
matter of fact, the web is connected to the environment via
frame and mooring threads whose strengths are about the
same as the radial threads so that damage tolerance is
guaranteed if the stronger threads, including the radial
threads, are not damaged.
This mechanism of damage tolerance as a result of near

absence of stress concentration offers yet another example
of the significance of hierarchical effects in defining the
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FIG. 4 (color online). The force distribution when one of the
spiral threads is damaged for K=k ¼ 1, 10, and 100 (from the left
to the right) when a middle spiral thread (top) and an outside
spiral thread (bottom) are absent. Arrows indicate the threads
with the highest tension.
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FIG. 5. The maximum forces F0 and f0 in the radial and spiral
threads with and without damage as a function of the ratio K=k,
when the ð2; iÞ spiral thread is absent where i is either 1, 5, or 8.
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overall performance of a natural material or structure.
Reduction of stress concentration in nacre has been sug-
gested to be due to layered structures composed of soft and
hard elements [19] and to the existence of nanoscale size in
the hierarchical structure [20] and, on a protein network,
due to mechanisms of deformation that involve mecha-
nisms at multiple hierarchical scales (from nanoscale to
macroscale) [21]. We wish to develop a multiscale model
of spider webs in order to understand the hierarchical
design of natural structures [20–22]. For this purpose, it
is important to replace linear springs with complex springs
which have different regimes of deformation of the type
employed in [21]. If we replaced them with simple non-
linear springs of the type employed in a classic work [23],
we expect no qualitative changes; this is because the stress
concentration, which is qualitatively the same as in the
linear systems, also appears in the simple nonlinear sys-
tems (or a plastic system without unloading) although the
singularity is weaker [23]. This point is directly shown in
simulation for a discrete network and experiment [24].
Note also that the threads in a spider’s web are not springs
but cables: the force acting on a thread becomes zero once
it is under compression. However, we confirmed numeri-
cally that, even in cases with many spiral threads absent,
almost all the springs are under tension so that the main
feature remains intact if we change springs into cables.

In conclusion, we have developed a simplified model of
an orb web, which allows a formal analytical solution of an
undamaged spider web. We have shown that an appropri-
ately large value of K=k (as in real spider webs) helps
enhance the damage tolerance of the web, clarifying the
physical origin of this remarkable feature. Furthermore,
our analysis of the force distribution in a damaged spider
web reveals amazing characteristics: (1) the distribution
changes due to the damage but in a way quite different
from ordinary elastic materials, and (2) the spider web is
virtually free of stress concentrations. We expect that the
physical principles found here are relevant in various con-

texts, e.g., in designing buildings, bridges, and space
structures.
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FIG. 6. Radial force F2;m and spiral force fn;i (as a function of
the distance from the damaged thread, �n ¼ n� i) of a web
with N ¼ 10, M ¼ 9, and K=k ¼ 10, when the ð2; iÞ spiral
thread is absent.
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