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Strongly vertically shaken granular matter can display a density inversion: A high-density cluster of

beads is elevated by a dilute gaslike layer of fast beads underneath (‘‘granular Leidenfrost effect’’). For

even stronger shaking the granular Leidenfrost state becomes unstable and granular convection rolls

emerge. This transition resembles the classical onset of convection in fluid heated from below at some

critical Rayleigh number. The same transition is seen in molecular dynamics (MD) simulations of the

shaken granular material. The critical shaking strength for the onset of granular convection can be

calculated from a linear stability analysis of a hydrodynamiclike model of the granular flow. Experiment,

MD simulations, and theory quantitatively agree.
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The holy grail question in research on granular dynam-
ics is [1,2], To what extent can granular flow be described
by a continuum approach? Though such hydrodynamic
equations can formally be derived from basic principles
of statistical physics (i.e., the Boltzmann equations with
the Chapman-Enskog kinetic theory [2–6]), it is question-
able whether they correctly describe granular flow, as the
separation of the microscopic length and time scales from
the macroscopic ones is much less pronounced than one
would desire for a continuum description [2] and clustering
of the grains [7] due to the inelastic nature of their collision
plays a dominant role. Indeed, explicit counterexamples
have been found due to an inelastic collapse [8], though in
one dimension [9] and thus somehow artificial.
Nonetheless, in many special situations the static (i.e.,
time-independent) hydrodynamic equations [10–12] for
granular flow successfully describe the observed phe-
nomena, in principle allowing for their application in
various fields such as process technology or geophysics.

In this Letter we analyze strongly vertically shaken
granular matter, which can display a density inversion
with a high-density cluster of slow beads being elevated
by a dilute gaslike layer of fast beads underneath. This
phenomenon has been dubbed granular Leidenfrost effect
[13], in analogy to the classical Leidenfrost effect dis-
played by a water droplet on a hot plate, elevated by its
own vapor. Indeed, the density profiles as function of the
shaking strength can be calculated [13,14] from the time-
independent hydrodynamiclike equations [10] and show
very good agreement with the experimental results [13].

However, as experimentally observed, for even stronger
shaking [� ¼ að2�fÞ2=g typically 50–80 for the dimen-
sionless acceleration, where a and f are shaking amplitude
and frequency, and g gravitational acceleration] and large
enough aspect ratio the inverted density profile becomes
unstable and convection rolls develop, both in 3D [15] and

quasi-2D [16]. Similar rolls were obtained in molecular
dynamics (MD) simulations [17,18]. Note that these con-
vection rolls are of very different nature than those at much
less strongly (� typically 3–10) shaken granular matter
[19]. Those rolls emerge from the interaction of the grains
with the surrounding walls and are thus a boundary effect
[20] and not a bulk instability as in the present case of
strongly shaken granular matter.
Here the convection rolls resemble the classical

Rayleigh-Bénard (RB) convection rolls emerging in fluid
heated from below and cooled from above [21,22] beyond
a critical temperature difference, or, when nondimension-
alized, beyond a critical Rayleigh number Rac, which can
analytically be calculated from a linear stability analysis of
the underlying continuum equations [21] (the Navier-
Stokes equations and the thermal advection equation in
the Boussinesq approximation). The famous result for an
infinite aspect ratio sample is Rac � 1101 (with open top
boundaries) and Rac � 1708 (with rigid top boundaries)
[23].
The key question is, Can one follow the analogous

approach for the time-dependent continuum equations of
granular flow and obtain the critical shaking strength from
the linear stability analysis of the Leidenfrost state? In
other words, is the description of granular flow with
time-independent continuum equations extendable to the
time-dependent case? Such a linear stability analysis has
already been performed [24] for chute flows, where the
formation of longitudinal vortices was predicted, but no
quantitative comparison with experiments or numerical
simulations could be done. Another example is the linear
stability analysis of a system of inelastically colliding hard
spheres, driven by two opposite ‘‘thermal’’ walls [25], but
again there was no comparison with experiment. Further
examples for linear stability analyses of granular contin-
uum equations include that for a thin layer of shaken
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granular matter [26] and closest to the system here that for
vertical shaken granular matter in a closed box [27].

In this Letter we will positively answer the above key
question, at least in respect to the calculation of the onset of
convection: We will first show our experimental results on
the onset of convection in strongly shaken granular matter,
then we will present the results from molecular dynamics
simulations, which quantitatively resemble the experimen-
tal ones. The main result of this Letter is the theoretical
calculation of the onset of convection by performing a
linear stability analysis of the continuum equations of
granular flow and, in particular, the favorable comparison
with experiments and MD simulations.

Experiment.—Our experimental setup consists of a
quasi-2D Perspex container of dimensions L�D�H
with an adjustable container length L ¼ 10–202 mm, a
depth D ¼ 5 mm, and a height H ¼ 150 mm. The con-
tainer is partially filled with steel beads of diameter d ¼
1:0 mm, density � ¼ 7800 kg=m3, and coefficient of nor-
mal restitution e � 0:9. The setup is mounted on a sinus-
oidally vibrating shaker with tunable frequency f and
amplitude a. The experiments are recorded with a high-
speed camera at a frame rate of 1000 frames per second.

The appropriate dimensionless control parameters to
analyze the experiments in this strong shaking regime are
[13,16] (i) the dimensionless shaking strength [28]

S ¼ a2ð2�fÞ2
gd

; (1)

which is the ratio of the kinetic energy inserted into the
system by the vibrating bottom and the potential energy
associated with the particle diameter d; (ii) the number F
of bead layers, defined as F � Npd

2=ðLDÞ, where Np is

the number of particles (determined from the total mass);
(iii) the inelasticity parameter " ¼ ð1� e2Þ; and (iv) the
length ratio L=d.

At strong shaking strength S and large enough bed
height (i.e., large enough F), the density-inverted
Leidenfrost state is formed [13], in which a cluster of
slow, almost immobile particles is supported by a gaseous
region of fast particles underneath. When further increas-
ing S, eventually a number of particles becomes more
mobile (higher granular temperature) than the surrounding
ones and creates an opening in the floating cluster of the
Leidenfrost state, as seen in Fig. 1. These particles have
picked up an excess of energy from the vibrating bottom
(due to a statistical fluctuation) and collectively move
upwards, very much like a hot fluid parcel at the bottom
plate in Rayleigh-Bénard convection. This upward motion
of the highly mobile beads must be balanced by a down-
ward movement of neighboring particles, leading to the
formation of a pair of convection rolls. Since the downward
motion is most easily accomplished at the sidewalls (due to
the extra source of dissipation, i.e., the friction with the
walls), the first convection roll always forms near a side-
wall. As shown in Fig. 1, within a second this first roll
triggers the formation of rolls along the entire length of the

container, leading to a fully developed convection pattern.
Such experiments are repeated for various filling heights F.
The respective critical shaking strength Sc for the onset of
convection is shown in Fig. 2; it strongly depends on F,
roughly exponentially as Sc � expð0:2FÞ.
Molecular dynamics simulations.—In order to investi-

gate information not available in experiment, we have also
performed molecular dynamics simulations, using a granu-
lar dynamics code [29,30] to numerically study the shaken
quasi-2D granular material. The MD code calculates the
particle trajectories from Newton’s equations of motion,
with the particle-particle interactions being given by a 3D
soft sphere collision model, including tangential friction
[29,30]. We have used the same parameters and dimen-
sions as in the equivalent experiment: The container is
filled with Np ¼ L=d�D=d� F identical spherical par-

ticles, i.e., the number which corresponds to the filling
height F. The coefficient of restitution e and friction
coefficient for the particle-particle and particle-wall inter-
actions determine the total energy dissipation in the sys-
tem. The friction coefficient is set to 0.03, while the
coefficient of normal restitution (which for simplicity is

FIG. 1 (color online). Onset of convection in experiment and
in MD simulations. (a)–(d) Snapshots of F ¼ 11:1 layers of d ¼
1:0 mm steel beads in a container of length L=d ¼ 101 shaken at
an amplitude of a ¼ 3:0 mm. The frequency was linearly in-
creased from f ¼ 42 Hz to f ¼ 48 Hz at a rate of 90 Hz=min .
The transition from the steady Leidenfrost state to fully devel-
oped convection took place at f ¼ 45 Hz [between frames (a)
and (b)]. (e)–(h) Snapshot from the corresponding MD simula-
tions. Again, F ¼ 11:1, shaking amplitude a ¼ 3:0 mm, and
linearly increased frequency (at the rate of 90 Hz=min ) with
f ¼ 44 Hz in (e). The onset of convection takes place at a
frequency of f ¼ 45 Hz (S ¼ 75, frame f). The light-colored
particles are moving upward and the dark ones downward.
Respective movies of both experiments and numerical simula-
tions can be seen in Ref. [39].
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assumed to be velocity-independent) is fitted to correctly
describe the experimentally found onset for the case of
F ¼ 10 layers, yielding the very realistic values of e ¼
0:957 for steel and e ¼ 0:905 for glass beads for both
particle-particle and particle-wall interactions.

The numerical results for ScðFÞ are shown in Fig. 2, too,
and they well agree with the experimental results within
numerical and experimental precision. Snapshots from the
numerical simulations are shown in Fig. 1, again showing a
one-to-one correspondence with the experiments.

Linear stability analysis.—Following [27], we will now
calculate the experimentally and numerically found onset
Sc of convection from a linear stability analysis of the
suggested [10,13,14] (two-dimensional) hydrodynamical
equations for the three fields of the granular flow, namely,
the number density nðx; y; tÞ, the velocity uðx; y; tÞ ¼
hcðx; y; tÞi � ðuxðx; y; tÞ; uyðx; y; tÞÞ of the granular flow,

and the granular temperature Tðx; y; tÞ ¼ 1
2mhðc� hciÞ2i,

which is defined as the fluctuation kinetic energy of the
particles around their mean velocity, with the mass m of a
single particle, c the instantaneous particle velocity, and
the angular brackets denoting a suitable averaging. The
hydrodynamic equations we will employ here and which
approximately describe the dynamics of these three fields
are [10,13,14] the continuity equation

@n

@t
þ u � rnþ nr � u ¼ 0; (2)

the momentum balance equation

mn

�
@u

@t
þ u � ru

�
¼ mn ~g� rpþ r � ð�½ruþ ðruÞT�Þ

þ rð�r � uÞ; (3)

in which p is the pressure, � the shear viscosity, and � the
second viscosity, and the granular energy balance equation

n

�
@T

@t
þ u � rT

�
¼ r � ð�rTÞ � pðr � uÞ � I; (4)

where � is the analog of thermal conductivity for a granular
gas and I is the dissipative term due to the inelastic particle
collisions [31]. The granular hydrodynamic equations (2)–
(4) are complemented by the respective global and local
boundary conditions [particle conservation, extremum of
uxðx; y; tÞ at the bottom of the container, uyðx; 0; tÞ ¼ 0 at

the bottom wall, vanishing velocities at the top y ! 1, and
finally temperature agreeing with the static temperature
profile at the bottom and at the top ðy ! 1Þ] and by the
constitutive relations for the pressure field p, the energy
dissipation rate I, and the transport coefficients �, �, and
�. Since our system combines dilute, gaseous regions with
clusters where the density approaches the close-packed
value, we must take excluded volume effects into account
[32]. Therefore, as equation of state for the two-
dimensional granular fluid we take [10,13,14] p ¼
nTðnc þ nÞ=ðnc � nÞ, with nc ¼ 2=

ffiffiffi
3

p
d2 the number den-

sity of a hexagonal close-packed crystal, accounting for the
excluded area of the gas. The constitutive relation for the

energy dissipation rate I reads [10,13,14] I ¼
"nT

ffiffiffiffiffiffiffiffiffiffi
T=m

p
=ð�c‘Þ. Here the inelasticity parameter " ¼

ð1� e2Þ naturally shows up in the theoretical model. The
value for the constant �c ¼ 2:26 has been adopted from
[10]. Also the parametrization of the thermal conductivity

is taken from [10,14], namely, � ¼ nð�‘þ dÞ2 ffiffiffiffiffiffiffiffiffiffi
T=m

p
=‘,

with the mean free path ‘ ¼ ðnc � nÞ=½ ffiffiffi
8

p
ndðnc � anÞ�,

the constants a ¼ 1� ffiffiffiffiffiffiffiffi
3=8

p
and � ¼ 0:6 [33]. For the

granular shear viscosity � various choices are proposed
[34]. Here we express � in terms of the Prandtl number Pr,
namely, � ¼ m Pr�. As Pr measures the ratio between
convective and diffusive energy transfer, which should be
roughly the same in the granular flow, we expect Pr�1.
Finally, because the viscosity � for our granular system
behaves so analogously to classical fluids, we use the
Stokes approximation to get � ¼ �� for the second vis-
cosity [34].
The linear stability procedure applied to the equations

(2)–(4) is in principle analogous to the one used to deter-
mine the onset of Rayleigh-Bénard convection in classical
fluids [21]; however, the base state is more complicated.
Rather than linearizing around the linear-temperature and
constant-density base state as in classical RB flow, we now
linearize around the Leidenfrost state [13] with the dense
and colder granular cluster on top of the gaseous and
warmer region. These nontrivial height dependences of
both granular temperature and density are numerically
known from Ref. [13]. The base state does not display
any lateral variation of the granular temperature or density
and the granular velocity is zero. The linearization around
the Leidenfrost base state leads to an eigenvalue problem,
which is solved with the spectral-collocation method [35–
37] with periodic boundary conditions in the horizontal
direction. The onset of convection corresponds to the in-

FIG. 2 (color online). Convection threshold in the ðS; FÞ phase
diagram from experiments, MD simulations, and theory. The
experiments and simulations are performed with d ¼ 1 mm
glass beads, with shaking amplitude a ¼ 2:0 mm (blue dots),
a ¼ 3:0 mm (red squares), and a ¼ 4:0 mm (black triangles).
The shaking strength S is increased by increasing the frequency
f. The open symbols correspond to the onset of convection in the
experiments and the solid ones to the onset in the MD simula-
tions. The solid line is the result of the linear stability analysis of
the Leidenfrost state (Pr ¼ 1:7).
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stability of the Leidenfrost base state and thus to the
occurrence of positive eigenvalues � > 0. The wave num-
ber kx corresponding to the most unstable mode (maximal
� value) determines the dominant perturbation that leads to
the transition from the Leidenfrost state to the convective
state [38].

The excellent agreement of the results from the linear
stability analysis with experiments and MD simulations is
most impressively seen in Fig. 2, showing the onset of
convection for various numbers F of layers [39]. The only
fit parameter we have used is the Prandtl number, the value
of which is set to Pr¼ 1:7. The convective rolls predicted
by our theory are stationary in nature and originate due to a
pitchfork bifurcation from the granular Leidenfrost state.
In the classical RB case, too, the first bifurcation from the
conduction state is responsible for the genesis of stationary
convection rolls at some critical Rayleigh number.

Conclusions.—We have shown that in strongly vertically
shaken granular matter the experimentally and numerically
observed phase transition from the density-inverted granu-
lar Leidenfrost state to the convective state can quantita-
tively be calculated from a linear stability analysis of the
time-dependent continuum theory of granular flow. Of
course, a full comparison goes beyond linear stability
theory and requires the (numerical) solution of the full non-
linear partial differential equations. Future work will also
have to reveal the sensitivity of the results to the employed
equation of state, accurate constitutive relations [40], and
transport coefficients in granular flow, which will allow us
to determine them with considerably enhanced confidence.

We thank G.W. Bruggert, M. Bos, and R. Bos for help
with the experiments, M. van der Hoef and H. Kuipers for
making their code [29,30] available to us, and S. Luding
for discussions. This work is part of the research program
of FOM, which is financially supported by NWO.

[1] H.M. Jaeger, S. R. Nagel, and R. P. Behringer, Rev. Mod.
Phys. 68, 1259 (1996).

[2] I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003).
[3] I. Goldhirsch, S. Noskowicz, and O. Bar-Lev, Phys. Rev.

Lett. 95, 068002 (2005).
[4] J. T. Jenkins and S. B. Savage, J. Fluid Mech. 130, 187

(1983); J. Jenkins and M. Richman, J. Fluid Mech. 171, 53
(1986); C. S. Campbell, Annu. Rev. Fluid Mech. 22, 57
(1990).

[5] N. Sela and I. Goldhirsch, J. Fluid Mech. 361, 41 (1998).
[6] J. J. Brey, J.W. Dufty, C. S. Kim, and A. Santos, Phys. Rev.

E 58, 4638 (1998).
[7] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619

(1993).
[8] Y. Du, H. Li, and L. P. Kadanoff, Phys. Rev. Lett. 74, 1268

(1995).
[9] N. Sela and I. Goldhirsch, Phys. Fluids 7, 507 (1995).
[10] E. L. Grossman, T. Zhou, and E. Ben-Naim, Phys. Rev. E

55, 4200 (1997).
[11] I. S. Aranson and L. S. Tsimring, Rev. Mod. Phys. 78, 641

(2006).

[12] J. Duran, Sands, Powders, and Grains: An Introduction to
the Physics of Granular Materials (Springer, New York,
2000).

[13] P. Eshuis, K. van der Weele, D. van der Meer, and D.
Lohse, Phys. Rev. Lett. 95, 258001 (2005).
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