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This Letter reports experimental results on random temporal dark solitons. One excites an incoherent

large-amplitude propagating spin-wave packet in a ferromagnetic film strip with a repulsive, instantaneous

nonlinearity. One then observes the random formation of dark solitons from this wave packet. The solitons

appear randomly in time and in position relative to the entire wave packet. They can be gray or black. In

spite of the randomness of the initial wave packets and the random formation processes, the solitons show

signatures that are found for conventional coherent dark solitons.
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Solitons are a ubiquitous phenomenon in nature, appear-
ing in systems as diverse as water, optical fibers, deoxyri-
bonucleic acid (DNA), and ultracold atoms [1–5]. Such
solitons are described by well-known paradigmatic non-
linear equations, one of which is the nonlinear Schrödinger
equation (NLSE). In terms of the NLSE model, two classes
of envelope solitons, bright and dark, can exist in nonlinear
media. Bright envelope solitons are localized large-
amplitude excitations on the envelope of certain carrier
waves. Their formation requires an attractive or focusing
nonlinearity. Dark envelope solitons are dips or holes in a
large-amplitude wave background. Their formation re-
quires a repulsive or defocusing nonlinearity.

Two classes of dark solitons, temporal and spatial, can
propagate in systems with a repulsive nonlinearity [6–9]. A
temporal dark soliton is a dip on a temporal continuous
wave. When the dip goes to zero, one has a black soliton.
When the amplitude at the dip is nonzero, one has a gray
soliton. A spatial dark soliton is a low-intensity hole in a
high-intensity background. Like temporal dark solitons,
spatial dark solitons can also be black or gray, which
depends on the intensity at the soliton regions. Both tem-
poral and spatial dark solitons have a jump in phase at their
centers. For gray solitons, such a phase jump is between 0�
and 180�. For black solitons, the phase jump equals exactly
180�. The envelope of temporal dark solitons and the cross
section profile of spatial dark solitons can be described by
one and the same function. For black solitons, this function
is a hyperbolic tangent function.

Like bright solitons, for many years dark solitons have
been taken as coherent nonlinear entities developed from
coherent waves. However, about ten years ago numerical
and experimental work demonstrated that dark solitons can
also be formed from partially incoherent waves [10–14].
This was realized for the case of spatial optical dark
solitons. In comparison with conventional dark solitons,
such dark solitons have several unique properties. First,
they are incoherent or have random phase. Second, the

solitons are always gray and cannot be black. Third, the
media must have a noninstantaneous nonlinearity, i.e., a
nonlinear response time that is much longer than the
fluctuation or correlation time of the incoherent wave.
It is important to emphasize that previous work on

incoherent dark solitons was for the case of spatial solitons
and noninstantaneous nonlinearity. Can a temporal dark
soliton be formed from incoherent waves? If yes, what are
the properties of such a soliton? Do the media need to have
a noninstantaneous nonlinearity? Is it possible to have a
fundamental black soliton? These questions are important
and intriguing but have never been addressed before.
This Letter reports the random formation of temporal

dark solitons from incoherent waves that have an instanta-
neous nonlinearity, i.e., a nonlinear response time much
shorter than the correlation time of the incoherent waves.
One excites a packet of large-amplitude incoherent waves
in a one-dimensional medium with a repulsive nonlinear-
ity. One then follows the propagation of such a wave packet
and observes the formation of dark solitons from the wave
packet. There are three important features of these solitons.
(1) The solitons have a random nature. They appear ran-
domly in time and in position relative to the overall wave
packet. (2) The solitons can be both gray and black. (3) In
spite of the random nature of the initial wave packet and
the random formation process, the solitons exhibit the
same kind of properties as conventional dark solitons.
More specifically, they are coherent and have the same
shape and phase properties as conventional dark solitons.
Therefore, the solitons described in this Letter are funda-
mentally different from both conventional dark solitons [6–
9] and incoherent dark solitons [10–14].
The experiment was performed for surface spin waves in

a magnetic yttrium iron garnet (YIG) film strip. Surface
spin waves have a repulsive nonlinearity, and the formation
of dark solitons from coherent surface spin waves has been
demonstrated previously [7,15–17]. Pulses of noisy micro-
waves were used to excite partially incoherent spin-wave
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packets at one end of the YIG strip. The propagation of
such packets along the YIG strip was probed by microstrip
line transducers [18]. The nonlinear response time of the
YIG film is inversely proportional to the power of the spin
waves [18,19]. The correlation time of the incoherent
packet is determined by the bandwidth of the incoherent
spin-wave signals. When the spin-wave amplitude is suffi-
ciently large to push the nonlinear response time below the
correlation time, the spin waves experience an instanta-
neous nonlinearity and random dark solitons appear. It is
worth noting that the excitation of pulsed spin waves,
rather than continuous spin waves, allowed for the easy
tracing of a specific signal at different positions along the
propagation path. However, the results reported below are
also applicable to continuous waves.

Figure 1 shows the experimental setup. The magnetic
field is in the plane and perpendicular to the length of the
YIG strip. This arrangement supports the propagation of
surface spin waves [20,21]. Three microstrip line trans-
ducers are positioned over the YIG strip. The leftmost one
is for the excitation of spin waves, and the others are for the
detection of spin waves.

For the data presented below, the YIG strip was 7:2 �m
thick, 2 mm wide, and 50 mm long. The spins on the
surfaces of the YIG film were unpinned. The spin waves
in such a film can be described by a simple monotonic
dispersion curve [20]. The magnetic field was 1113 Oe.
The microstrip transducers were 50 �m wide and 2 mm
long. The detection transducers were held at displacements
(x) of 7 and 15 mm from the input transducer. The band of
microwave noise ranged from about 2 GHz to about 8 GHz.
The frequency band of available spin-wave modes ranged
from about 5.0 GHz to about 5.4 GHz. The noise band was
much wider than the spin-wave band and therefore allowed
for the excitation of all available spin-wave modes. A
statistical analysis confirmed the random nature of the
initial noisy signals. The two-point autocorrelation func-
tion was a near-� function with a half-power width of
about 0.32 ns and a peak-to-background ratio of about 450.

The waveforms shown below were recorded directly by
a broadband oscilloscope. The phase profile for a given dip
is the phase of the carrier wave relative to a reference

continuous wave. The frequency of the reference wave
was given by the main frequency of the carrier wave of
the soliton. This frequency was determined through a fast
Fourier transform analysis.
The amplitude and phase profiles of the solitons were

fitted theoretically through the general form of a gray
soliton, a solution to the NLSE as described in Ref. [8]:

uðtÞ¼a0fi
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1�a21

q

þa1 tanh½a2ðt�a3Þ�gexp½iða4tþa5Þ�;
where fa0; . . . ; a5g are fit parameters, juj is the amplitude,
and argðuÞ gives the phase. This fit function was applied to
selected regions of the experimental data using a least-
squares fitting routine. The meaning of the fit parameters is
as follows: a0 determines the background level of the
soliton, a1 determines the depth of the soliton, a2 deter-
mines the width and nonlinearity, a3 determines the dis-
placement from the time origin, a4 determines the local
slope of the phase, which is proportional to the velocity of
the flat amplitude region away from the soliton, and a5
determines the phase offset. Because the fits were instan-
taneous, spatial dependence was neglected in the function.
Figure 2 shows representative data for the random for-

mation of dark solitons. Figures 2(a)–2(c) give three sets of
waveforms sampled for three input noise pulses, each with
a width of 25 ns and a power of 5 dBm. In each graph, the
left and right diagrams show the waveforms detected at
different positions as indicated. The inset in 2(c) shows the
waveform in an expanded horizontal scale. The arrows and
labels identify the dips, which are solitons.
Several results are evident in Fig. 2. (1) For a given noise

pulse, the solitons appear randomly. For example, in sam-
ple 1 the leading dip is a gray soliton at x ¼ 7 mm.
However, at x ¼ 15 mm one sees a black soliton at the
center of the overall packet. In contrast, in sample 2 one
sees a black soliton at x ¼ 7 mm but a gray soliton at x ¼
15 mm. In sample 3, the leading dip is a gray soliton at x ¼
7 mm. However, at x ¼ 15 mm the leading dip is not a
soliton but the second dip is a black soliton. (2) The overall
waveforms and the appearance of gray and black solitons
are random from sample to sample. (3) Both gray and black
solitons are possible. Note that previous work reported
that, in the case of incoherent spatial dark solitons, the
formation of black solitons was impossible [10,12]. (4) For
each soliton, the carrier wave is coherent as shown repre-
sentatively by the inset in 2(c). This result is further con-
firmed by the coherent phase profiles shown in Fig. 3.
(5) The overall wave packet at x ¼ 15 mm is much wider
than that at x ¼ 7 mm, and both are much wider than the
initial wave packet. This indicates that the initial incoher-
ent spin-wave packet disperses significantly during its
propagation along the YIG strip.
Figure 3 presents the characteristics for the two solitons

shown in Fig. 2(a). Figures 3(a) and 3(b) are for the solitons
in the left and right diagrams in Fig. 2(a), respectively. In
each graph, the top and bottom diagrams show the ampli-
tude and phase profiles, respectively. The circles show
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FIG. 1. Schematic of the experimental arrangement.
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experimental data. The curves show theoretical fits. The
vertical dashed lines indicate the center of solitons.

The data in Fig. 3 clearly indicate that the observed
solitons have the signatures found for conventional coher-
ent dark solitons. First, one sees almost perfect matches
between the experimental and theoretical soliton profiles.
This indicates that the solitons have the same shape as
conventional dark solitons. In particular, the black soliton
has a zero dip and a hyperbolic tangent shape. Second, both
solitons have a phase jump at their centers. For the gray
soliton, this phase jump is about 90�, which is less than

180� as usual. For the black soliton, however, one sees a
phase change of about 180�. Third, the phase profiles are
smooth and clean, and their fits are self-consistent with the
amplitude profiles. This supports the conclusion that the
solitons are coherent. It is important to emphasize that, for
each soliton, the amplitude and phase profiles were fitted
with the same set of parameters.
The data in Figs. 2 and 3 are for a relatively narrow and

low-power noise input pulse. With an increase either in
pulse width or in power, one observes random dark soliton
pairs and triplets. Figure 4 show representative data.
Figure 4(a) shows the data for a noise input pulse that
has the same width as the pulses for the above-discussed
data but a much higher power level of 25 dBm. Figure 4(b)
shows the data for the 100 ns and 20 dBm input pulse. Both
data were measured at x ¼ 7 mm. In each column, the top
diagram shows the waveform. The middle and bottom
diagrams show the amplitude and phase profiles, respec-
tively, for the solitons marked with a dashed outline in the
top diagram. In the middle and bottom diagrams, the
circles show data, the curves show fits, and the vertical
dashed lines indicate the centers of the solitons.
The data in Fig. 4(a) show a black ‘‘soliton pair.’’ Both

solitons have a zero dip, a hyperbolic tangent shape, and a
smooth phase profile with a 180� phase jump at the dips.
The data in Fig. 4(b) show a completely different response.
Specifically, the data show a gray-black-gray ‘‘soliton
triplet.’’ It is important to emphasize that, although not
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FIG. 3 (color online). Characteristics of dark solitons shown in
Fig. 2(a). Panels (a) and (b) are for the signals detected at
different positions, as indicated. In each graph, the top and
bottom diagrams show the amplitude and phase profiles, respec-
tively. Circles are experimental data. Curves are theoretical fits.
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shown here, the multiple solitons appear randomly from
position to position and randomly from sample to sample.

It is worth mentioning that the direction of soliton phase
changes is essentially random. For the single solitons in
Fig. 2, one observes both up-jump and down-jump phase
changes. For the soliton pair in Fig. 4(a), the phase changes
are opposite; one phase jumps up and the other jumps
down. For the solitons in Fig. 4(b), in contrast, the phases
all jump up and one sees a step response.

The data in Figs. 2–4 clearly demonstrate the formation
of random temporal dark solitons from incoherent waves.
Here, ‘‘random’’ means three things. First, the solitons
appear randomly in time and in position relative to the
entire wave packet. Second, the type of soliton is random.
They can be gray or black and single or multiple in number.
Third, the direction of the phase change is random. A
statistical analysis of fit parameters over 121 mainly black
solitons found the parameters random over the approxi-
mate ranges a0 2 ½0; 0:4�, a2 2 ½�0:5; 0:5�, a3 an equiva-
lent spread around two measured places on the film,
a4 2 ½�0:05; 0:05�, and a5 2 ½0; 2�Þ. In spite of their
random nature, the solitons show signatures found for
conventional dark solitons.

The physical process for the formation of the above-
described random solitons is similar to the previous work
on random bright solitons [22]. The main mechanisms are
as follows. First, the propagating spin-wave packets consist
of a large number of uncorrelated spin-wave modes.
Second, during the propagation of the packet, the spin-
wave modes experience different types of interferences
that lead to the random peaks and dips in the wave packet.
Third, a dip that has a strong background experiences an
instantaneous nonlinearity and thereby can evolve into a
dark soliton quickly. Once realized, the soliton behaves
like a conventional dark soliton over a time interval that is
shorter than the correlation time. The soliton loses its
soliton features beyond the correlation time.

For the situation depicted in Figs. 2 and 3, the nonlinear
response time of the YIG film and the correlation time of
the incoherent spin-wave packet were estimated to be
about 3 and 18 ns, respectively. The details on the estima-
tion of these times were given in Refs. [18,19,22]. These
time scales clearly indicate that the media have an instan-
taneous nonlinearity. It is this instantaneous nonlinearity
that facilitates the formation of dark solitons. The random
nature of the soliton formation results from the incoherent
nature of the spin-wave packets. The phase of the initial
waves changes randomly, and this leads to the randomness
of the direction of phase changes.

There are three additional points of note. First, the
random solitons presented above differ from coherent
spin-wave dark solitons in Refs. [7,15–17]: (1) the initial
waves were incoherent, (2) the formation and types of the
solitons were random, and (3) the solitons had a lifetime
much shorter than the coherent solitons. Second, the pre-
sented solitons are temporal signals measured by stationary

microstrip lines. Future study on the spatial evolution of
these solitons by the use of a scannable probe is of great
interest. Third, the analysis indicates that an effective
short-time-scale description by a nonlinear Schrödinger
equation with random parameters is an effective model.
This presents a challenge for future theoretical work.
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González, Emergent Nonlinear Phenomena in Bose-
Einstein Condensates (Springer-Verlag, Berlin, 2008).

[5] A. C. Scott, Phys. Rev. A 31, 3518 (1985).
[6] A. Hasegawa and Y. Kodama, Solitons in Optical

Communications (Oxford, New York, 1995).
[7] M. Chen, M.A. Tsankov, J.M. Nash, and C. E. Patton,

Phys. Rev. Lett. 70, 1707 (1993).
[8] Y. S. Kivshar and B. Luther-Davies, Phys. Rep. 298, 81

(1998).
[9] A. N. Slavin, Y. S. Kivshar, E. A. Ostrovskaya, and H.

Benner, Phys. Rev. Lett. 82, 2583 (1999).
[10] Z. Chen, M. Mitchell, M. Segev, T. H. Coskun, and D.N.

Christodoulides, Science 280, 889 (1998).
[11] T.H. Coskun, D. N. Christodoulides, M. Mitchell, Z.

Chen, and M. Segev, Opt. Lett. 23, 418 (1998).
[12] D. N. Christodoulides, T. H. Coskun, M. Mitchell, Z.

Chen, and M. Segev, Phys. Rev. Lett. 80, 5113 (1998).
[13] Z. Chen, M. Segev, D.N. Christodoulides, and R. S.

Feigelson, Opt. Lett. 24, 1160 (1999).
[14] T.H. Coskun, D. N. Christodoulides, Z. Chen, and M.

Segev, Phys. Rev. E 59, R4777 (1999).
[15] B. A. Kalinikos, M.M. Scott, and C. E. Patton, Phys. Rev.

Lett. 84, 4697 (2000).
[16] H. Benner, B. A. Kalinikos, N. G. Kovshikov, and M. P.

Kostylev, JETP Lett. 72, 213 (2000).
[17] A. A. Serga, A. Andre, S. O. Demokritov, B. Hillebrands,

and A.N. Slavin, J. Appl. Phys. 95, 6607 (2004).
[18] M. Chen, M.A. Tsankov, J.M. Nash, and C. E. Patton,

Phys. Rev. B 49, 12 773 (1994).
[19] M.A. Tsankov, M. Chen, and C. E. Patton, J. Appl. Phys.

76, 4274 (1994).
[20] D. D. Stancil and A. Prabhakar, Spin Waves: Theory and

Applications (Springer, New York, 2009).
[21] P. Kabos and V. S. Stalmachov, Magnetostatic Waves and

Their Applications (Chapman and Hall, London, 1994).
[22] M. Wu, P. Krivosik, B. A. Kalinikos, and C. E. Patton,

Phys. Rev. Lett. 96, 227202 (2006).

PRL 104, 037207 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

22 JANUARY 2010

037207-4


