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We investigate field-driven domain wall (DW) propagation in magnetic nanowires in the framework of

the Landau-Lifshitz-Gilbert equation. We propose a new strategy to speed up the DW motion in a uniaxial

magnetic nanowire by using an optimal space-dependent field pulse synchronized with the DW

propagation. Depending on the damping parameter, the DW velocity can be increased by about 2 orders

of magnitude compared to the standard case of a static uniform field. Moreover, under the optimal field

pulse, the change in total magnetic energy in the nanowire is proportional to the DW velocity, implying

that rapid energy release is essential for fast DW propagation.

DOI: 10.1103/PhysRevLett.104.037206 PACS numbers: 75.60.Jk, 75.75.�c, 85.70.Ay

Recently the study of domain wall (DW) motion in
magnetic nanowires has attracted a great deal of attention,
inspired both by fundamental interest in nanomagnetism as
well as potential industrial applications. Many interesting
applications like memory bits [1,2] or magnetic logic
devices [3] involve fast manipulation of DW structures,
i.e., a large magnetization reversal speed.

In general, the motion of a DW can be driven by a
magnetic field [4–6] and/or a spin-polarized current [7–
11]. Although the DW dynamics in systems of higher
spatial dimension can be very complicated, some simple
but important results were obtained by Schryer and Walker
for effectively one-dimensional (1D) situations [12]: at low
field (or current density), the DW velocity v is linear in the
field strength H until H reaches a so-called Walker break-
down field Hw [12]. Within this linear regime, DW prop-
agates as a rigid object. For H >Hw, the DW loses its
rigidity and develops a complex time-dependent internal
structure. The velocity can even oscillate with time due to
the ‘‘breathing’’ of the DW width. The time-averaged
velocity �v decreases with the increase of H, resulting in
a negative differential mobility. �v can be again linear with
H approximately whenH � Hw. The predicted v-H char-
acteristic is in good agreement with experimental results
on permalloy nanowires [4–6]. Recently a general defini-
tion of the DW velocity proper for any types of DW
dynamics has been also introduced [13].

For a single-domain magnetic nanoparticle (called
Stoner particle), an appropriate time-dependent but spa-
tially homogeneous field pulse can substantially lower the
switching field and increase the reversal speed since it acts
as an energy source enabling to overcome the energy
barrier for switching the spatially constant magnetization
[14,15]. In the present Letter, we investigate the dynamics
of a DW in a magnetic nanowire under a field pulse
depending on both time and space. As a result, such a
pulse, synchronized with the DW propagation, can dra-
matically increase the DW velocity by typically two orders
compared with the situation of a constant field. Moreover,
the total magnetic energy typically decreases with a rate

being proportional to the DW velocity; i.e., the external
field source can even absorb energy from the nanowire.
A magnetic nanowire can be described as an effectively

1D continuum of magnetic moments along the wire axis
direction. Magnetic domains are formed due to the com-
petition between the anisotropic magnetic energy and the
exchange interaction among adjacent magnetic moments.
Let us first concentrate on the case of a uniaxial magnetic
anisotropy: two dynamically equivalent configurations of
1D uniaxial magnetic nanowires are schematically shown
in Fig. 1. Figure 1(a) shows the wire axis to also be the easy
axis (z axis). Figure 1(b) shows the easy axis (z axis) is
perpendicular to the wire axis (x axis). Although our results
described below apply to both configurations, we will
focus in the following on Fig. 1(b). The spatiotemporal

dynamics of the magnetization density ~Mðx; tÞ is governed
by the Landau-Lifshitz-Gilbert (LLG) equation [16]
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where j�j ¼ 2:21� 105ðrad=sÞ=ðA=mÞ is the gyromag-
netic ratio, � is the Gilbert damping coefficient, and Ms

is the saturation magnetization density. The total effec-

tive field ~Ht is given by the variational derivative of the

total energy with respect to magnetization, ~Ht ¼
�ð�E=� ~MÞ=�0, where �0 is the vacuum permeability.
The total energy E ¼ R1

�1 dx"ðxÞ can be written as an
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FIG. 1. A schematic diagram of two dynamically equivalent
1D magnetic nanowire structures. (a) Easy axis is along the wire
axis (z axis); (b) easy axis (z axis) ? the wire axis (x axis). The
region between two dashed lines denotes the DW region.

PRL 104, 037206 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

22 JANUARY 2010

0031-9007=10=104(3)=037206(4) 037206-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.037206


integral over an energy density (per unit section area),

"ðxÞ ¼ �KM2
z þ J
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where x is the spatial variable in the wire direction. HereK,
J are the coefficients of energetic anisotropy and exchange

interaction, respectively, and ~H is the external magnetic
field. Moreover, we have adopted the usual spherical

coordinates, ~Mðx; tÞ ¼ Msðsin� cos�; sin� sin�; cos�Þ,
where the polar angle �ðx; tÞ and the azimuthal angle
�ðx; tÞ depend on position and time.

Hence, the total field ~Ht consists of three parts: the

external field ~H, the intrinsic uniaxial field along the

easy axis ~HK ¼ ð2KMz=�0Þẑ, and the exchange field ~HJ,
which reads in spherical coordinates as [12,17]

HJ
� ¼ 2J

�0Ms

@2�

@x2
� J sin2�

�0Ms

�
@�

@x

�
2
;

HJ
� ¼ 2J

�0Ms sin�

@

@x

�
sin2�

@�

@x

�
:

(3)

Following Ref. [12], let us focus on DW structures ful-
filling @�=@x ¼ 0, i.e., all of the magnetic moments rotate
around the easy axis synchronously. Then the dynamical
equations take the form

� _� ¼ �
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where we have defined � � ð1þ �2Þj�j�1, and Hiði ¼
r; �;�Þ are the three components of the external field in
spherical coordinates. In the absence of an external field,

an exact solution for a static DW is given by tan�ðxÞ2 ¼
expðx=�Þ, where � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J=ðKM2
s Þ

p
is the width of the DW.

We note that a static DW can exist in a constant field only if
the field component along the easy axis is zero, Hz ¼ 0. In
fact, according to Eqs. (4), static solutions need to fulfill
H� ¼ 0 [implying � ¼ tan�1ðHy=HxÞ is spatially con-

stant] and

2J

�0Ms
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� KMs

�0

sin2�þH� ¼ 0 (5)

or, upon integration,

J
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cos2�þHrð�Þ ¼ const: (6)

Considering the two boundaries at � ¼ 0ðx ! �1Þ and
� ¼ �ðx ! þ1Þ for the DW, we conclude Hrð0Þ ¼
Hrð�Þ, which requires Hz ¼ 0. In this case, the stationary

DW solutions under a transverse field are described as x ¼R½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðKM2
ssin

2���0MsH sin�Þ=Jp ��1d�.

Thus, when an external field with a component along the
easy axis is applied to the nanowire, the DW is expected to
move. We use a traveling-wave ansatz to describe rigid
DW motion [12],

tan
�ðx; tÞ
2

¼ exp

�
x� vt

�

�
; (7)

where the DW velocity v is assumed to be constant.
Substituting this trial function into Eq. (4), the dynamic
equations become

� sin�v ¼ ��ð�H� þH�Þ; � sin� _� ¼ �H� �H�:

(8)

Equation (8) describes the dependence of the linear veloc-

ity v and the angular velocity _� on the external field ~H.
Our following results discussion will be based on Eqs. (8).
Let us first turn to the case of a static field case applied

along the easy axis [z axis in Fig. 1(b)], H� ¼ �H sin�,
H� ¼ 0. Here we recover the well-known static solution

for a uniaxial anisotropy [18],

v ¼ j�j�H
�þ ��1

; (9)

where the azimuthal angle�ðtÞ ¼ �ð0Þ þ j�jHt=ð1þ �2Þ
is spatially constant (i.e., @�=@x ¼ 0) and increases line-
arly with time.
Let us now allow the applied external field to depend

both on space and time. Our task is to design, under a fixed

field magnitudeH, an optimal field configuration ~Hðx; tÞ to
increase the DW velocity as much as possible. From
Eqs. (8), we find a manifold of solutions of specific
space-time field configurations described by a parameter u,

Hrðx; tÞ ¼ H cos�; H�ðx; tÞ ¼ �H sin�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
;

H�ðx; tÞ ¼ �uH sin�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
: (10)

The velocities v and _� read

v ¼ j�j�H
1þ �2

�þ uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p ; _� ¼ j�jH
1þ �2

1� �uffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p : (11)

The previous static field case is recovered for u ¼ 0. The
maximum of the velocity vm with regard to u is reached for
u ¼ 1=�,

vm ¼ j�j�Hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p ; (12)

where the angular velocity is zero, _� ¼ 0. On the other

hand, _� attains a maximum for u ¼ ��, where, in turn,
the linear velocity vanishes. In Fig. 2 we have plotted the
dependence of the velocity on the parameter u for different
damping strengths and typical values for the DW width �
and the magnitude H of the external field.
To understand the physical meaning of the maximum

velocity vm, we note that, according to Eqs. (8), the field
components H� and H� are required to be proportional to
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sin� to ensure the constant velocity under the rigid DW
approximation. Moreover, at u ¼ 1=� we have H� ¼
�H�, and from the identity

ð�H� þH�Þ2 þ ð�H� �H�Þ2 ¼ ð1þ �2ÞðH2 �H2
r Þ;
(13)

we conclude that the term (�H� þH�) is maximal result-

ing in a maximal velocity according to Eqs. (8). As a result,
the new velocity under the optimal field pulse is larger by a

factor of vm=v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
=� � 1=� compared to a con-

stant field with the same field magnitude. To give a prac-
tical example, the typical value for the damping parameter
in permalloy is� ¼ 0:01which results in an increase of the
DW velocity by a factor of 100.

It is instructive to also analyze the optimal field pulse
according to Eq. (10) with u ¼ 1=� in its Cartesian com-
ponents,

Hxðx; tÞ ¼ H sin2�ð1� �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
Þ=2;

Hyðx; tÞ ¼ �H sin�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
;

Hzðx; tÞ ¼ Hðcos2�þ �sin2�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
Þ;

(14)

where � follows the wavelike motion tan�ðx;tÞ2 ¼
expðx� � j�jHffiffiffiffiffiffiffiffiffi

1þ�2
p tÞ. In Fig. 3, we plotted these quantities at

t ¼ 0 around the DW center where the main spatial varia-
tion of the pulse occurs. Note that the space-dependent
field distribution should move with the same speed vm

synchronized with the DW propagation. Near the DW
center the components Hx and Hz are (almost) zero
whereas a large transverse component Hy is required to

achieve fast DW propagation. Qualitatively speaking, the
transverse field causes a precession of the magnetization
resulting in its reversal. This finding is consistent with
recent micromagnetic simulations showing that the DW
velocity can be largely increased by applying an additional
transverse field [19].

It is also interesting to study the energy variation under
the optimal field pulse,

dE

dt
¼ ��0

Z þ1

�1
dx

�
@ ~M

@t
� ~Ht þ ~M � @ ~H

@t

�
� P� þ Ph:

(15)

The first term P� is the intrinsic damping power due to all
kinds of damping mechanisms described by the phenome-
nological parameter �. According to the LLG equation,
P� ¼ � �0�

j�jMs

Rþ1
�1 dxð@M@t Þ2 is always negative [14], imply-

ing an energy loss. Ph is the external power due to the time-
dependent external field. From Eq. (11), both powers are
obtained as

P� ¼ � 2�

1þ �2
�0j�jMs�H

2; (16)

Ph ¼ 2�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p
� 1Þ � 2u

ð1þ �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p �0j�jMs�H
2; (17)

such that the total energy change rate is

dE

dt
¼ �2�0MsHv ¼ � 2ð�þ uÞ�0j�jMs�H

2

ð1þ �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

p : (18)

Note that the intrinsic damping power is independent of the
parameter u and always negative, whereas the total energy
change rate is proportional to the negative DW velocity.
Thus, for positive velocities (u >��), the total magnetic
energy decreases while it grows for negative velocities
(u <��). In the former case, energy is absorbed by the
external field source while in the latter case, the field
source provides energy to the system. The optimal field
source helps to rapidly release or gain magnetic energy
which is essential for fast DW motion. This aspect is very
different from the reversal of a Stoner particle where the
time-dependent field is always needed to provide energy to
the system to overcome the energy barrier [14].
Moreover, our new strategy of employing space-

dependent field pulses can also be applied to uniaxial
anisotropies of arbitrary type: let wð�Þ be the uniaxial
magnetic energy density. The static DW solution in the
absence of an external field reads x ¼ R

��1ð�Þd�, where

FIG. 3 (color online). The x, y, z components of the optimal
field pulse. The parameters are chosen as � ¼ 0:01, � ¼ 20 nm
for permalloy [6]. The field magnitude is H ¼ 100 Oe.

FIG. 2 (color online). The DW propagation velocity v versus
the parameter u at the different damping values � ¼ 0:1, 0.2, 0.5,
and 0.8. The other parameters are chosen as � ¼ 20 nm and
H ¼ 100 Oe.
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�ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½wð�Þ � w0�=J

q
: (19)

Here w0 is the minimum energy density for magnetization
along the easy axis. By performing analogous steps as be-

fore, we obtain the optimal velocity as vm ¼ j�jHffiffiffiffiffiffiffiffiffi
1þ�2

p
�max

,

where �max denotes the maximum of�ð�Þ throughout all �.
On the other hand, our approach is not straightforwardly

extended to the case of a magnetic wire with biaxial
anisotropy. To see this, consider a biaxial anisotropy "i ¼
�KM2

z þ K0M2
x , where the coefficients K, K0 correspond

to the easy and hard axis, respectively [12]. The LLG
equations read

� _�¼ �
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sin2��K0Ms
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sin2�cos2�
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�0Ms
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sin� sin2�;

�sin� _�¼ �H� �H� þKMs

�0

sin2�� 2J

�0Ms
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@x2

þK0Ms

�0

sin2�cos2�þ�K0Ms

�0

sin� sin2�:

(20)

Let us assume �ðx; tÞ ¼ �0 is a constant determined
by the applied field. Substituting the traveling-wave

ansatz tan�ðx;tÞ2 ¼ expðx�vt
� Þ, where now � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J=ðK þ K0cos2�0Þ
p

=Ms, into Eqs. (20), we obtain

� sin�v ¼ ��ð�H� þH� þ K0Ms sin� sin2�0=�0Þ;
(21)

�K0Ms sin� sin2�0=�0 þ ð�H� �H�Þ ¼ 0: (22)

For a static field along z axis H� ¼ �H sin�, H� ¼ 0,

the solution is just the Walker’s result v ¼ j�j�H=�
(note here that � also depends on H) [12]. To implement
our new strategy, we need to find the maximum of the
right-hand side of Eq. (21) under two constraints of
Eqs. (22) and (13) with H� and H� being proportional to

sin�. The unique solution to this problem is indeed a
constant field along the z axis which is thus the optimal
field configuration.

In summary, our theory is general and can be applied to a
magnetic nanowire with a uniaxial anisotropy that can be
from shape, magnetocrystalline, or the dipolar interaction.
The experimental challenge of our proposal is obviously
the generation of a field pulse focused on the DW region
and synchronized with its motion. However, the field
source synchronization velocity can be precalculated
from the material parameters. As for the required localized
field (see Fig. 3), we propose to employ a ferromagnetic

scanning tunneling microscope tip to produce a localized
field perpendicular to the wire axis [20] and use a localized
current to produce an Oersted field along the wire axis [21].
Moreover, such required localized fields may also be pro-
duced by nanoferromagnets with strong ferromagnetic (or
antiferromagnetic) coupling to the nanowire. We also point
out that, although the field source typically does not con-
sume energy but gain energy from the magnetic nanowire,
the pulse source may still require excess energy to over-
come effects such as defects pinning, which is not included
in our model. At last, the generalization of the strategy
beyond the rigid DW approximation, and to DW motion
induced by spin-polarized current, will also be an attractive
direction of future research.
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