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We demonstrate the existence of a new type of zero energy state associated with vacancies in multilayer

graphene that has a finite amplitude over the layer with a vacancy and adjacent layers, and the peculiarity

of being quasilocalized in the former and totally delocalized in the adjacent ones. In a bilayer, when a gap

is induced in the system by applying a perpendicular electric field, these states become truly localized with

a normalizable wave function. A transition from a localized to an extended state can be tuned by the

external gate for experimentally accessible values of parameters.
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Graphene is a one atom thick layer of carbon atoms
ordered in a honeycomb lattice. The enormous interest
that has arisen since its discovery [1] is driven equally by
potential technological applications [2] and unconven-
tional low-energy behavior (massless Dirac quasiparticles)
[3]. Together with single layer graphene (SLG), bilayer
graphene (BLG), and multilayer graphene (MLG) struc-
tures were also synthesized. The BLG structure, being a
unique low-energy effective model [4], raises better tech-
nological expectations due to the possibility to open and
tune a gap in the spectrum by the electric field effect [5–7].
A proper understanding of the effect of disorder is crucial
for technology relevant applications. Annealing and re-
moving the substrate have recently led to an increase in
mobility by 1 order of magnitude in SLG [8,9]. Intrinsic
defects, such as vacancies or topological lattice defects are
not easy to get rid of and further investigation of their role
is mandatory. Vacancies have lately been recognized as one
of the most important scattering centers in SLG and BLG
[10,11] and the zero modes induced by this type of defects
can greatly affect the transport properties of the samples as
well as the possible electronic instabilities near the neutral-
ity point.

In the present Letter we address the character of
vacancy-induced electronic states in BLG, with extension
to the MLG case. We begin by summarizing the main
findings of this work. (i) For the minimal model we con-
struct an analytic solution on the lattice for the zero modes
associated to the two different types of vacancies in BLG—
located at A1=B2 orB1=A2 [see Fig. 1(a)]. We demonstrate
that a new type of state different from these found in SLG
and in other layered systems exists in BLG for a B1=A2
vacancy. The peculiarity consists in having a finite ampli-
tude over the two layers and, more exotic, the wave func-
tion is quasilocalized in one layer and totally delocalized in
the other. We also prove that these states survive in the
continuum limit. This solution is directly applicable to
MLG and graphite. (ii) We demonstrate that these local-
ization properties survive in the presence of nonminimal
coupling �3. (iii) We study the behavior of these states in

the presence of a gap and find that these associated to the
B1=A2 vacancy become truly localized states leaving in-
side the gap.
Model.—The tight-binding minimal model for the �

electrons in AB-stacked BLG is shown in Fig. 1(a). We
use the parameters t � 3 eV and �1 � t=10 [3]. It has two
parabolic bands that touch at two degenerate Fermi points
with a constant density of states (DOS) at the Fermi points.
It will also be of interest to consider the interlayer hopping
�3 � �1=3 that linearizes the bands around the Fermi
points and induces a vanishing DOS at zero energy.
Figure 1 shows the local DOS (LDOS) for �3 ¼ 0 (b)
and �3 � 0 (c). The presence of a finite gap induced
through a perpendicular electric field Ez ¼ V=ðedÞ, where
d � 0:34 nm is the interlayer distance, is included by add-
ing an on-site energy term: �V=2 at layer 1 and V=2 at
layer 2. Within the present model vacancies correspond to
the elimination of lattice sites. We do not include any
reconstruction of the remaining structure. Even though
some reconstruction might be present in real systems, the
zero-energy modes we are interested in here seem to be
rather insensitive to it [12].
Analytic construction of the vacancy states.—Avacancy

in the honeycomb lattice gives rise to a quasilocalized state
[13] whose wave function can be written as

�ðx; yÞ � eiK�r

xþ iy
þ eiK

0�r

x� iy
; (1)

whereK andK0 are the reciprocal space vectors of the two
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FIG. 1 (color online). (a) Bilayer lattice structure and main
tight-binding parameters. (b)–(c) LDOS for �3 ¼ 0 and �3 ¼
0:1t, respectively.
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inequivalent corners of the first Brillouin zone, and (x, y)
are distances in a reference frame centered at the vacancy
position. We will construct an analytic solution for
vacancy-states in BLG within the minimal model follow-
ing the analysis done for SLG in [13]. The wave function is
obtained by matching surface state solutions at zigzag
edges with those localized at Klein edges for a suitable
boundary condition. The schematics used in this construc-
tion is shown in Fig. 2. The amplitude of the zero-mode
wave function is denoted ciðl; jÞ, with c ¼ a, b, and i ¼ 1,
2 for sites in sublattice A, B and layer 1, 2 of the unit cell
located at (l, j). By cutting the system into left and right
regions, defined with respect to the vacancy position, we
see that in order to have a solution that decays away from
the vacancy we need a zigzag-edge surface state to the left
and a Klein-edge surface state to the right. The existence of
surface states localized at zigzag edges in BLG has been
proven in Ref. [14]. There are two linearly independent
solutions, one living in a single layer (monolayer type) and
the other having a finite amplitude over the two layers
(bilayer type). Only sites belonging to the sublattice con-
taining the zigzag-edge have a finite amplitude. In an
analogous way, one can show that surface states localized
at Klein edges in BLG exist as well [15]. Again, two
linearly independent solutions show up (monolayer and
bilayer types).

Consider a vacancy at A1=B2 sites, as sketched in
Fig. 2(a). The zigzag and Klein-edge surface states to be
used have to have a finite amplitude, respectively, on the

first zigzag column to the left and on the first beard column
to the right of the vacancy. This is imposed by the matching
(boundary) condition, which reads

b1ð�1; jÞ þ b1ð0; jÞ þ b1ð0; j� 1Þ ¼ 0 (2)

for all j’s except at the vacancy, and involves sites of the
two mentioned columns. The zigzag and Klein-edge states
with amplitudes starting at these columns are those of the
monolayer type, i.e., with weight only on one layer:

b1ðl < 0; jÞ ¼ X

km

b1ð�1; kmÞD�ðlþ1Þ
km

eikmð½ðlþ1Þ=2�þjÞ; (3)

b1ðl � 0; jÞ ¼ X

km0
b1ð0; km0 ÞD�l

km0 e
ikm0 ½ðl=2Þþj�; (4)

where Dk ¼ �2 cosðk=2Þ, and the sums go over
2�=3 � km � 4�=3 in Eq. (3) and 0 � km0 � 2�=3 and
4�=3 � km0 � 2� in Eq. (4), for momenta km, km0 along
the y direction, with b1ðl; kÞ the Fourier transform of
b1ðl; jÞ. The analysis now is completely analogous to the
SLG case [13]. Namely, the boundary condition (2), con-
veniently rewritten as

P
km
b1ð�1; kmÞeikmj ¼ �P

km0 ð1þ
eikm0 Þb1ð0; km0 Þeikm0 j, is satisfied for all km and km0 in the
ranges indicated above by choosing b1ð�1; kmÞ ¼ 1 and
b1ð0; km0 Þð1þ eikm0 Þ ¼ 1. Going from lattice indices (l, j)
to distances (x, y) we obtain exactly the result given by
Eq. (1). Therefore, for a vacancy at A1=B2 sites in BLG a
quasilocalized (decaying as 1=r) zero-energy mode exists
around the vacancy, living in the same layer but opposite
sublattice.
Consider now a vacancy at B1=A2 sites, sketched in

Fig. 2(b). The zigzag and Klein-edge states with a finite
amplitude, respectively, over sites (�1, j) and (0, j) of
layer 1, are now those of the bilayer type. These states have
amplitudes over layer 1 still given by Eqs. (3) and (4), with
the replacement b ! a. Additionally, they have also finite
amplitudes over layer 2, which can be written as

a2ðl<0;jÞ¼�1

t

X

km

a1ð�1;kmÞðlþ1ÞD�ðlþ2Þ
km

eikmð½ðlþ2Þ=2�þjÞÞ;

(5)

a2ðl � 0; jÞ ¼ �1

t

X

km0
a1ð0; kÞðlþ 1ÞD�ðlþ1Þ

km0 eikm0 ð½ðlþ1Þ=2ÞþjÞ;

(6)

with momenta km, km0 restricted to the intervals men-
tioned before. An important point to note is that the
boundary condition reads exactly the same as in Eq. (2),
with the replacement b ! a. Even though we are using
zigzag and Klein-edge states which have finite amplitudes
in both layers, it happens that, by construction, the weight
(5) of the zigzag surface state at layer 2 is such that
a2ð�1; jÞ ¼ 0, and thus the matching condition at this
layer is satisfied by default. At this point the derivation
follows closely that for a vacancy at A1=B2. Noting that in
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FIG. 2 (color online). Schematics for constructing a vacancy-
induced zero-energy solution in bilayer graphene (see text).
Circles indicate sites where the localized states have a finite
amplitude. (a) A1=B2 vacancy. (b) B1=A2 vacancy.
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layer 1 we have to match exactly the same edge-state
solutions given by Eqs. (3) and (4), with b ! a, and that
in layer 2 Eqs. (5) and (6) can also be written in the same
form as Eqs. (3) and (4), apart from the term ðlþ 1Þ�1=t,
we arrive at the following zero-mode behavior,

�ðx; yÞ ��ðx; yÞ½1; x�1=t�; (7)

where �ðx; yÞ is the quasilocalized state given in Eq. (1),
and the two component wave function refers to the two
layers: the first and second components to the first and
second layers, respectively. This is a delocalized state, with
the peculiarity of being quasilocalized in one layer (where
the vacancy sits) and delocalized in the other where it goes
to a constant when r ! 1.

The analytic construction used for the minimal model in
BLG applies directly to MLG and graphite with Bernal
stacking along the lines of Ref. [16]. The quasilocalized
state (1) is a solution in any multilayer with a A1=B2
vacancy. For a B1=A2 vacancy the solution is a general-
ization of state (7) with a quasilocalized component in the
layer where the vacancy resides and delocalized compo-
nents in the layers right on top and below this one:
�ðx; yÞ ��ðx; yÞ½1; x�1=t; x�1=t�.

The continuum limit.—Both the conventional [Eq. (1)]
and the unconventional [Eq. (7)] solutions are fully con-
sistent with the low-energy approximation for BLG [4]. Far
from the vacancy the zero modes must obey @2�zc B1ðz; �zÞ ¼
0 and @2zc A2ðz; �zÞ ¼ 0 at K, where z ¼ xþ iy and �z ¼
x� iy, and a similar set at K0 with z replaced by �z every-
where. An obvious solution has c B1ðz; �zÞ ¼ fðzÞ and
c A2ðz; �zÞ ¼ 0, or c B1ðz; �zÞ ¼ 0 and c A2ðz; �zÞ ¼ fð�zÞ,
with fðzÞ analytic. Adding the contribution of the two
K’s we see that Eq. (1) is precisely of this form, the
amplitude over the sublattice opposite to the vacancy
behaving as 1=zþ 1=�z, analogous to the quasilocalized
solution in SLG [13]. Interestingly, the bilayer model
also supports solutions with c B1ðz; �zÞ ¼ �zfðzÞ and
c A2ðz; �zÞ ¼ 0, or c B1ðz; �zÞ ¼ 0 and c A2ðz; �zÞ ¼ zfð�zÞ.
Equation (7) at the low-energy sublattice opposite to the
vacancy is indeed a combination of the stated solutions,
namely �z=zþ z=�z [17].

Vacancies in the gapless case.—The analytic results just
presented are for �3 ¼ 0. A finite �3 is crucial for the
existence of the quasilocalized state (1); otherwise a finite
density of delocalized states exists in the same energy
region [see Fig. 1(b) and 1(c)]. This is addressed numeri-
cally in the following. We also show that the delocalized
character of the new solution (7) persists in the presence of
a finite �3. The localization character of vacancy-induced
modes is studied through finite-size-scaling of the inverse
participation ratio (IPR). The later is defined as P � ¼P

N
i j’�ðiÞj4 for the eigenstate �, where ’�ðiÞ is its ampli-

tude at site i. We perform exact diagonalization on small
clusters with N up to 2� 1002 sites. The IPR for extended,
quasilocalized, and truly localized states scales distinc-
tively with N [18]. While for extended states we have

P � � N�1, for quasilocalized states the 1=r decay implies
P � � logðNÞ�2 (consequence of the definition of the IPR
in terms of normalized eigenstates). For localized wave
functions the significant contribution toP � comes from the
sites in which they lie, and a size independent P � shows
up. Additionally to the IPR, we analyze the changes in-
duced in the LDOS for sites around the vacancy. The
LDOS is computed using the recursive Green’s function
method in clusters with N ¼ 2� 14002, from which the
thermodynamic limit can be inferred.
In Figs. 3(a) and 3(b) we show the LDOS at a lattice site

closest to a vacancy located in sublattice A1=B2 and
B1=A2, respectively. The sharp resonance at zero energy
in the former case is in agreement with the presence of a
quasilocalized state, while the broader feature in the later
may be attributed to the delocalized wave function induced
by a vacancy in B1=A2, which still presents a quasilocal-
ized component in the layer where the vacancy sits (and
thus the feature). This interpretation is fully corroborated
by the IPR scaling analysis shown in Fig. 3(c) and 3(d) for
a vacancy in A1=B2 and B1=A2, respectively: quasilocal-
ized state in the former case, and delocalized in the later.
Vacancies in the gaped case.—When a finite electric

field Ez is present, a gap �g ¼ ½V2�2
1=ðV2 þ �2

1Þ�1=2 opens
between conduction and valence bands [5]. The quasilo-
calized state due to a vacancy at sublattice A1=B2 becomes
a resonance around	V=2 in the gaped case, as seen in the
LDOS shown in Fig. 4(a) for a site closest to the vacancy. A
strong resonance is seen around�V=2 for a vacancy at A1
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FIG. 3 (color online). LDOS (a)–(b) and IPR (c)–(d) for a
vacancy at sublattice A1=B2 (left panels) and B1=A2 (right
panels). The LDOS is computed at a lattice site closest to the
vacancy. The IPR is for the zero-energy mode induced by the
vacancy. Lines are guides to the eyes.
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(we used V ¼ 0:1t), apart from the known gap-edge diver-
gence at��g=2 characteristic of the perfect lattice (dashed

line) [19]. Avacancy at B2 gives identical results with E !
�E. Such a vacancy-induced state living in the continuum
is expected to be delocalized. This is confirmed by the IPR
scaling as N�1 [20], as shown in Fig. 4(c).

For a vacancy at sublattice B1=A2, which originates the
atypical delocalized state discussed above when no gap is
present, a truly localized state inside the gap is induced
when Ez � 0. This is suggested by the sharp feature seen
inside the gap in the LDOS for a site closest to the vacancy,
as shown in Fig. 4(b) and zoomed in the inset (marked by
arrows). The IPR scaling to a constant, as seen in Fig. 4(d),
fully confirms the localized nature of this vacancy-induced
state. Its asymmetric weight over the two layers explains
why it appears off zero energy: being negative for a B1
vacancy (layer 1 at an electrostatic energy �V=2), as
shown in Fig. 4(b), and positive, symmetrically placed
with respect to the center of the gap, for a A2 vacancy
(layer 2 at an electrostatic energy þV=2).

Conclusions.—We have found a new type of the zero-
mode state in BLG with special features: in the absence of
a gap it is quasilocalized in one of the layers and delocal-
ized in the other and in the presence of a gap becomes fully
localized inside the gap. The results obtained in this work
are directly applicable to MLG and graphite with Bernal
stacking. The findings here reported can be important to

understand recent experiments done in thin films of graph-
ite irradiated with protons whose main effect is to produce
single vacancies on the sample [21]. These samples show
an enhanced local ferromagnetism that can be due to the
local moments associated to the zero modes described in
this work, and also a better conductivity than the untreated
samples with less defects pointing to the idea that the
delocalized states induced by the vacancies contribute to
the conductivity. An enhanced conductivity has also been
found in acid-treated few-layer graphene [22]. The local-
ized state found in the gaped case can also provide a natural
explanation for the observation of localization inside the
gap in the biased BLG [7] and is in agreement with
previous results obtained with impurity models in the
continuum [23].
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