PRL 104, 034504 (2010)

PHYSICAL REVIEW LETTERS

week ending
22 JANUARY 2010

Impact of a Viscous Liquid Drop

Robert D. Schroll,1 Christophe Josserand,2 Stéphane Zaleski,2 and Wendy W. Zhang1

'Physics Department and the James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, USA
2UPMC Univ Paris 06, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France
and CNRS, UMR 7190, Institut Jean Le Rond d’Alembert, F-75005 Paris, France
(Received 1 April 2009; published 21 January 2010)

We simulate the impact of a viscous liquid drop onto a smooth dry solid surface. As in experiments,
when ambient air effects are negligible, impact flattens the falling drop without producing a splash. The
no-slip boundary condition at the wall produces a boundary layer inside the liquid. Later, the flattening
surface of the drop traces out the boundary layer. As a result, the eventual shape of the drop is a
“pancake” of uniform thickness except at the rim, where surface tension effects are significant. The
thickness of the pancake is simply the height where the drop surface first collides with the boundary layer.
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The impact of a liquid drop onto a dry solid surface lies
at the heart of many important technological processes
[1,2], from the application of a thermal spray [3-9] to
fuel atomization [8,10-12]. Recently experiments revealed
that the splash formed when a low-viscosity liquid, such as
water or ethanol, hits a dry smooth wall at several m/s
owes its existence entirely to the presence of air [13—18].
Reducing the ambient gas pressure eliminates the splash
entirely. These results are motivating new studies on im-
pact dynamics [19-28].

Here we reexamine the impact of a viscous liquid drop
when air effects are absent. We use an axisymmetric
volume-of-fluid (VOF) code to simulate the impact at
reduced ambient pressure [29—32]. Our results are in quan-
titative agreement with experiments. They show that a
boundary layer, corresponding to a thin region where the
radial flow created by impact adjusts to the no-slip condi-
tion at the wall, is created by the impact. The boundary
layer has uniform thickness. As impact nears its end, the
drop surface flattens onto the boundary layer, evolving into
a pancake of uniform thickness.

The simulation solves the Navier-Stokes equations, to-
gether with the constraint of incompressibility, for both the
liquid interior and the gas exterior. The gas pressure, or
equivalently the air density p,, is kept so small that two-
fold changes in the value of p, have little effect on the
liquid dynamics. Across the drop surface, surface tension
effects give rise to a Laplace pressure jump [29]. After
impact onto the solid wall, the liquid flow inside the drop
satisfies both the no-flux and no-slip boundary conditions
at the solid wall. In the simulation, the bottom surface of
the liquid drop is not broken upon impact. Finally, the
entire system is enclosed in a cylindrical tube, as was
done in the experiment. The only difference is that our
simulation uses a tube of radius R = 6a and height H =
6a, while the experiment uses a larger one. We have
checked that results are unaffected by changes in the tube
dimension.
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Figure 1 plots successive drop surface shapes (outlined
in white) calculated from a typical run of our simulation
against snapshots from an experiment by Driscoll and
Nagel under the same impact conditions [18]. This impact
corresponds to a liquid drop of radius ¢ = 0.16 cm hitting
a dry smooth wall with speed U, = 4 m/s. The liquid is a
low molecular weight silicone oil with dynamic viscosity
ur = 9.4 cP, density p;, = 0.94 g/cm?, and surface ten-
sion o = 21 dynes/cm. The exterior fluid corresponds to
air at 34 kPa, with density p, = 4.4 X 10~ g/cm? and
dynamic viscosity u, = 1.8 X 1072 cP. The comparison
in Fig. 1 shows that the shape evolution calculated from
the simulation agrees very well with the experiment.
After the drop hits the wall, the liquid inside the drop is
diverted outwards and expands radially along the wall
[Fig. 1(b)]. Later, the falling drop flattens, evolving to-
wards a shape resembling a pancake with a thickened outer
rim [Fig. 1(¢c)]. By ¢ = 7.47, where 7 = a/U,, is a typical
fall time for the drop, the expanding drop attains its maxi-
mum extent [Fig. 1(d)]. After that point in time, surface
tension causes the drop in the simulation to retract inwards
and reform into a spherical shape, a dynamics we do not
analyze.

FIG. 1. Tmpact of a viscous silicone oil drop at 4 m/s onto a
smooth, dry substrate at reduced ambient pressure (34 kPa).
Surface profiles (white) from simulated impact are overlaid
against snap shots from an experiment. From left to right, the
successive times are t = 0, 7, 27 and 7.47 where 7 = a/Uj is
the impact time scale. Here Re = 1280 and We =~ 2280.
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In the rest of the Letter we examine how the formation of
the pancake is controlled by the kinematics of impact, i.e.,
the drop radius and impact speed, as well as the material
properties. To correlate outcomes from different impacts,
we nondimensionalize the length scales by a, the velocities
by Uy, and the time scales by 7. Since neither the tube
dimensions nor the air properties affect the liquid dynamics
reported here, the outcomes depend on only two dimen-
sionless parameters: the Reynolds number Re =
2p Upa/py and the Weber number We = 2p; Uja/o.
The impact in Fig. 1 corresponds to Re = 1280 and We =
2280, within the viscous regime identified in [33].

Previous studies [33,34] proposed a simple estimate for
the eventual thickness /4 of the pancake. The idea is that the
only mechanism that can arrest the outward radial expan-
sion is viscous dissipation. We then assume that the impact
energy is dissipated by a radial flow of strength U, in a
liquid pancake of thickness 7 and maximal extent R, ;.
Balancing the dissipation against the initial kinetic energy
yields

)
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This energy balance, together with volume conservation
4ma’/3 = wR2,h, predicts that the dimensionless pan-
cake thickness i/a should scale as Re 2/5. However, it
does not tell us when the characteristic pancake thickness A
first emerges. Nor does it explain why the drop would
flatten into a sheet with such uniform thickness. Next we
show that an understanding of the boundary layer formed
upon impact provides natural explanations for both fea-
tures. Very recently Roisman et al. studied the impact
formed when a viscous drop hits a solid sphere using
theory, experiment, and simulation [27,28]. This theoreti-
cal analysis also suggests that a boundary layer is present.
However, no direct calculation of the vorticity distribution
from the simulation, or its connection to the formation of
the pancake structure in the experiment, were presented.
These are the features we focus on next.

During the first instants of impact, when ¢ < f,,,, the
maximal radial extent of the liquid drop expands approxi-
mately as \/4aUt, quantitatively consistent with measure-
ments from the experiment [35]. Thus the outermost edge
of the ““splat” formed upon impact both expands quickly
and decelerates rapidly. To track its local evolution, we
switch to a reference frame x = r — R, (1), where R, is
defined as a radial position directly behind the rim, instead
of the cylindrical coordinate where the r axis is along the
drop center line and z = 0. We then plot the calculated
drop surface profiles within the new reference frame which
is expanding outwards at approximately the same rate as
the outermost edge [Fig. 2(a)]. We find that, initially (¢t =
0.37) a thin collar is ejected from a nearly spherical drop.
As time goes on, surface tension slows the edge of the
expanding liquid sheet, causing liquid to accumulate into a
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FIG. 2 (color online). Time evolution of the liquid sheet
ejected after impact. (a) Shape evolution in the comoving frame
x =r— R,(t) where R,(t) = 1.3/Uyat. The impact speed
Uy =2 m/s and the liquid viscosity u; = 0.2 poise. Other
parameters unchanged from that for Fig. 1. (b) Onset time
tonset (Open symbols) and t,,,, the time of maximum radial
extent (closed symbols) as a function of We. The different
symbols correspond to different simulated impacts U, =
2-8 m/s (O), o = 5.25-84 dynes/cm (V), and u = 10-50 cP
(A). Inset plots onset time 7, VS Re.

rounded rim. This trend is consistent with results from
previous studies [36—38]. This rounding of the outer rim
also creates a local minimum in the height profile. To the
left of the minimum (smaller radial distance from the
center), the height slopes downwards. As time goes on,
the downward slope becomes more and more gently sloped
and the height flattens inwards. By t = 4.97, a pancake of
uniform thickness is apparent. In short, viewing the impact
in this comoving reference frame reveals that the formation
of the pancake proceeds in a simple way. A characteristic
thickness £ is first attained near the outermost rim, then
propagates inwards without change.

From the simulation, we can quantify this dynamics by
associating the first appearance of 4 with an onset time
tonset- Figure 2(b) plots 7., as a function of the impact
parameters. Nondimensionalizing ?,,. by the impact time
scale 7 = a/U, produces essentially flat curves with re-
spect to both Re and We. This suggests that 7, 1S pri-
marily controlled by the kinematics of impact, with no
strong dependence on either the liquid viscosity or surface
tension. Moreover, within the range of impact examined,
the onset time scale ., 1S always considerably shorter
than 7,,,,, the time when the radial expansion produced by
impact is halted and the drop retracts back to a nearly
spherical shape. This suggests that the emergence of # is
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not related to whether the kinetic energy has been suffi-
ciently dissipated, but instead controlled by the fall time 7,
which tells us how quickly the downward falling liquid
drop comes into contact with the wall.

One feature which is strongly affected by the fall time is
the generation and diffusion of vorticity within the liquid
drop. Prior to impact, the drop is falling with a spatially
uniform downward velocity and the vorticity is 0 every-
where inside the drop. After impact, the no-flux condition
at the wall causes the liquid previously falling downwards
to be diverted into a radially expanding flow. This expan-
sion flow speeds up as it moves away from the center line,
reaches a peak at R;, then slows down as it enters the rim.
This radial expansion also adjusts, via viscous effects, to
the no-slip boundary condition at the solid wall. As a result
of this adjustment, vorticity is generated in the liquid layer
nearest to the solid wall. At any moment, the amount of
vorticity generated to ensure zero slip at the wall is dictated
by the strength of the radial expansion flow. Because the
simulated impact is axisymmetric, only the azimuthal
component of the vorticity is nonzero, i.e., @ =
w(r, z,t)e, where = du,/dr — du,/dz. For high
Reynolds number flows this adjustment takes place inside
a narrow boundary layer. In Fig. 3(a) we plot the wall value
of the vorticity wq(r, 1) [39]. Since the radial outflow is
largest near the outer edge, the vorticity also has a maxi-
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FIG. 3 (color online). Vorticity evolution after impact.
(a) Value of the vorticity at the wall as a function of radial
distance r [39]. From top to bottom, the profiles are taken at r =
0.37,0.97, 1.67, and 3.07. (b) The 20%, 50%, and 90% contours
of the vorticity distribution.
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mum near R;,. As the impact proceeds, the downward fall
of the liquid drop slows, retarding the expansion and thus
reducing the magnitude of w,.

We would like to delineate the spatial extent of the
boundary layer from the spatial structure of the velocity
field within the liquid drop. Our task is complicated by the
fact that the absolute size of the vorticity is strongly
correlated with the strength of the radial expansion flow.
Since the radial expansion flow varies with r, vorticity is
generated at different rates at different spatial locations.
Moreover, at a given location, the vorticity production rate
slows over time because the radial expansion slows. Thus
contours of absolute vorticity do not provide clear indica-
tions for the spatial extent of the boundary layer. We side-
step this complication by normalizing w(r,z, t), the
vorticity distribution in the bulk of the liquid, by the
“wall” value w(r, t). This essentially strips away varia-
tions in the vorticity distribution due to the varying speed
of the radial expansion flow. For simple high Reynolds
number flows, such as a uniform flow past a solid wall, as
well as the boundary layer created by a straining flow
towards a solid wall [40], this procedure correctly repro-
duces the boundary layer structure that emerges from
asymptotic analysis. In Fig. 3(b) we plot contours of the
normalized vorticity distribution. In each snapshot, the
solid lines within the liquid drop correspond to contours
where w(r, z, 1)/ wy(r, ) = 90% (lowest curve), 50%, and
20% (highest curve). At early times (t = 0.37), the bound-
ary layer delineated by the contours is a pancake-shaped
region inside the liquid drop. Except at the outermost edge,
the top surface of the liquid drop is widely separated from
the boundary layer. As impact proceeds, the boundary
layer extends radially and thickens slightly, but retains its
pancake shape. At 1 = 1., the top surface of the drop
collides with the boundary layer. After the collision, the
surface at the collision location ceases to decrease in
height. At the same time, the rest of the drop surface
continues to fall downwards, bringing more and more
portions of the surface into collision with the boundary
layer. The result is a “front” that flattens inwards radially,
tracing out the pancake-shaped boundary layer.

The idea that the eventual pancake thickness A first
emerges when the top surface of the drop collides with
the boundary layer suggests the following scaling relation
for the eventual thickness /: If the boundary layer thickens
diffusively prior to its collision with the top surface, then A
would scale be approximately /v 7, Where v is the
kinematic viscosity of the liquid. If 7., is simply a/U,
which is the simplest estimate suggested by Fig. 2, then
h/a, the ratio of the pancake thickness to the drop radius
follows the Blasius scaling Re™!/2. If instead 7., has a
weak Re!/ variation, which is also consistent with our
data, then /1/a = Re™?/, reproducing the scaling law pro-
posed previously. What is significant about the new sce-
nario outlined here is not that it changes the scaling
exponent for //a, but that it provides a natural explanation
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for why the characteristic pancake thickness first emerges
near the rim, and also why the final shape is such a high
degree of spatial uniformity. Both features are dictated by
the structure of the viscous boundary layer.

Before concluding, we comment on how the boundary
layer may affect splash formation. Air has negligible ef-
fects on the impact we simulate here. However, as ¢ ap-
proaches 27, the radial expansion slows and the pressure
gradient within the liquid sheet is essentially zero. In this
time window, the boundary layer is not securely attached to
the wall. Any external perturbation that adds an adverse
pressure gradient, e.g., resistance from the air flow, can
potentially cause the boundary layer to separate from
the wall. Since the shape of the impacting drop at its
outermost extent is coupled to the contours of the vis-
cous boundary layer, the separating boundary layer may
peel the thin liquid layer away from the wall, forming the
beginning of a corona. Simulations to check this idea are
under way [35].

In conclusion, we have simulated the impact of a viscous
oil drop when the ambient air has negligible effects.
Results on the large-scale shape deformation agree quanti-
tatively with measurements from available experiments.
The thin, spatially uniform pancake shape that a falling
drop gets flattened into owes its existence to the boundary
layer in the liquid drop created by impact.
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