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We describe a method to create effective gauge potentials for stationary-light polaritons. When

stationary light is created in the interaction with a rotating ensemble of coherently driven double-�

type atoms, the equation of motion is that of a massive Schrödinger particle in a magnetic field. Since the

effective interaction area for the polaritons can be made large, degenerate Landau levels can be created

with degeneracy well above 100. This opens up the possibility to study the bosonic analogue of the

fractional quantum Hall effect for interacting stationary-light polaritons.
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One of the outstanding and challenging problems of
many-body physics is the understanding of strongly corre-
lated quantum systems. With the advances of atomic phys-
ics and quantum optics over the last decades a number of
new model systems based on cold atoms emerged which
allow an experimental study with unprecedented precision
and control [1]. Recently it has been suggested to consider
quasiparticles of light-matter interaction as an alternative.
It has been predicted in [2] that slow-light polaritons [3] in
a nonlinear fiber would undergo a crystallization sim-
ilar to the Tonks-Girardeau transition [4]. The dynamics
of interacting polaritons was considered in a cavity ar-
ray [5], realizing the Jaynes-Cummings-Hubbard model.
Furthermore a mechanism to induce Bose-Einstein con-
densation [6] of stationary-light polaritons [7] was pro-
posed and analyzed.

In this Letter we show that it is possible to create
effective magnetic fields for stationary-light polaritons.
This extends previous proposals for the generation of
gauge potentials for atoms [8]. Stationary-light polaritons
[7,9–11] emerge in the interaction of a pair of counter-
propagating light fields with a double-� atomic system
driven by a pair of counter-propagating control laser. They
behave as Schrödinger or two-component Dirac particles
[12,13] with an effective mass that can be adjusted by the
control fields. They open up the possibility to study a
variety of single- and many-particle effects in effective
magnetic fields, such as Lorentz force or, in the presence
of interactions, the bosonic fractional quantum Hall effect
[14]. The achievable strength of the magnetic field is
comparable to the case of atoms [8], but polaritons have
a number of technical advantages: As opposed to atoms a
direct measurement of phase is simple for photons.
Furthermore using refractive index modulations it is
straight forward to create flat-bottom scalar potentials to
ensure degeneracy of Landau levels. Finally, spatial con-
finement to lower dimensions can be achieved by simple
waveguide and resonator techniques and the effective tem-
perature can be controlled.

In the following we show how a nonzero effective
magnetic field can be generated for stationary light using
a uniformly rotating medium, similar to cold atoms in
rotating traps [1,15]. In the case of electrically neutral
cold atoms an artificial magnetic field can also be created
using two counter-propagating light beams with shifted
spatial profiles [16,17] or having a transverse dependence
of the atomic energy levels [18]. Yet in the present scheme
it is the stationary polaritons rather than the atoms that are
affected by the gauge field. The underlying mechanism can
be attributed to a rotational frequency shift [19,20]. There
have been proposals of creating gauge fields for slow-light
via the spatial dependence of the control beams [21] or
using moving media to induce an Aharonov-Bohm phase
[22] and light drag [23,24] for slow light. In contrast, we
here discuss the stationary rather than the slow-light setup
which allows generation of Landau levels with a high
degree of degeneracy.
We consider a four level scheme involving two hyperfine

atomic ground states jgi and jsi with magnetic quantum
numbers m ¼ 0, as well as two excited states je�i with
m ¼ �1, as shown in Fig. 1. The states are coupled in a
closed-loop configuration by four light fields with opposite
circular polarizations. A pair of counterpropagating control
lasers with Rabi frequencies ��e�ikcz drives the transi-

FIG. 1 (color online). The Raman interaction of two counter-
propagating control lasers of Rabi frequencies �� and opposite
circular polarization coupling to the jsi � je�i transitions of a
double-� system generates a quasistationary pattern of Stokes
fields E�, called stationary light.
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tions jsi ! je�i to create electromagnetically induced
transparency (EIT) for another pair of counterpropagating

quantized probe fields Ê� coupling the states jgi and je�i.
This sets up two parallel � schemes sharing the same
ground states. EIT appears for two-photon resonance in

both � systems !ðpÞ
þ �!ðcÞ

þ ¼ !ðpÞ� �!ðcÞ� ¼ !sg. If the

amplitudes of the control fields are equal, j�þj ¼ j��j, a
stationary-light polariton is formed [6,7].

Let us introduce field amplitudes Ê� that are normalized
to a number and vary slowly in space and time by

Ê�ðr; tÞ ¼
ffiffiffiffiffiffiffiffi

@!
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q

Ê�ðr; tÞ expf�ið!pt� kpzÞg þ H:c:

Furthermore continuous atomic-flip operators are defined

as �̂��ðr; tÞ ¼ 1
�N

P

j2�VðrÞ�̂
j
��, where �̂j

�� � j�ijjh�j is
the flip operator of the jth atom, and the sum is taken over a
small volume �V around r containing �N atoms.

In what follows the probe fields are considered weak.
This prevents depletion of the ground state jgi. We further
assume the medium to rotate uniformly with angular fre-
quency � around the propagating direction of control and
probe fields. As a result one arrives at a set of equations for
the atomic coherences and the probe beams in the lab
frame:
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Ê�þ iF̂�;

(2)

i
@

@t
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Here L̂z is the orbital angular momentum of the atoms

along the z axis, n is the atom density and g ¼ }
@

ffiffiffiffiffiffiffiffi
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q

is

the common coupling constant of both probe fields with }
denoting the dipole matrix element. Furthermore, �� ¼
�� þ i��, where �� is the decay rate of the transitions
je�i � jgi and kp ¼ !p=c is the carrier wave number of

the probe. The single-photon detunings of the upper states
are denoted by�þ and��, respectively, and � stands for a
small two-photon detuning. An occurring frequency mis-
match between the states jgi and jsi can be compensated

by a proper choice of the two-photon detuning �. F̂A are
Langevin noise operators necessary to preserve the com-
mutation relations. For exponentially decaying variables

the noise operators are � correlated in time hF̂AðtÞF̂Bðt0Þi ¼
DAB�ðt� t0Þ and the diffusion coefficients DAB are pro-
portional to the population of the excited states. Since we
work in the linear response regime, the population of the
excited states is negligible, and we are allowed to disregard
the Langevin noise terms.
The adiabatic eigensolution of the coupled Maxwell-

Bloch Eqs. (1)–(3) immune to spontaneous decay is the
stationary dark-state polariton (DSP) [7]

�̂ ¼ cos�ðcos’Êþ þ sin’Ê�Þ � sin��̂gs; (4)

where the mixing angles are defined as tan� ¼ g
ffiffiffi

n
p

=�,
with�2 ¼ �2� þ�2þ and tan’ ¼ ��=�þ, assuming real
control fields. Thus the equation of motion for the DSP
reads
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where vg ¼ ccos2� is the EIT group velocity and r? ¼ ð@x; @yÞT . Here �̂1 ¼ � sin’Eþ þ cos’Eþ and �̂2 ¼
sin�ðcos’Êþ þ sin’Ê�Þ þ cos��̂gs are superpositions of the other eigensolutions of Eqs. (1)–(3) whose equations of
motion after elimination of the excited states read

�

@

@t
� i

c

2kp
r2

?

�

�̂1 � c cos�
@

@z
�̂� c sin�

@

@z
�̂2 ¼ � g2n

�
�̂1 þ F̂�1

; (6)

�

@

@t
þ i�cos2�

L̂z

@
� i

c

2kp
sin2�r2

?

�

�̂2�
�

þi�sin�cos�
L̂z

@
þ i

c

2kp
sin�cos�r2

?

�

�̂�csin�
@

@z
�̂1¼�g2nþ�2

�
�̂2þ F̂�2

:

(7)

Here we put �þ ¼ �� ¼ � and neglected terms containing � because of the EIT condition �� � �2. F̂�1;2
are the

Langevin noise forces of the bright polaritons. Adiabatic elimination of �̂1;2 in Eqs. (6) and (7) and subsequent substitution
into Eq. (5) results in
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which is correct up to second order in nonadiabatic corrections. Equation (8) represents a Schrödinger equation for a
particle with an effective tensorial mass and with minimal coupling to an artificial gauge field. The masses are given by
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mk ¼ @�=2vgLabs� and m? ¼ @kp=vg, respectively.
Labs ¼ c�=g2n defines the resonant absorption length in
absence of EIT and F̂� is the Langevin noise force for the
dark-state polariton. The emerging gauge potential can be
expressed as

A ¼ m?ð�ez � r?Þsin2�; (9)

where r? ¼ ðx; yÞT is the radial vector from the axis and
the corresponding momentum operator is given by p̂? ¼
�i@r?. The scalar potential reads

U ¼ �1
2m?�2�2sin4�þ @�sin2�; (10)

where � ¼ kr?k. Choosing a proper two-photon detuning,
by, e.g., spatially varying Zeeman or Stark shifts, the
antibinding centrifugal potential can be compensated.
Finally the rotation induced and longitudinal diffusion
rates �?

rot and Dk
diff are

�?
rot ¼ Labs

vg

�2sin2�cos4�

�

1þ i
�

�

�

; (11)

Dk
diff ¼ vgLabs: (12)

The real part of �?
rot describes azimuthal diffusion associ-

ated with loss and the imaginary part a corresponding
correction to the mass. Dk

diff is responsible for a diffusive
behavior along the original propagation axis of the light.

From Eq. (9) we compute the magnetic field to be

B ¼ r�A ¼ 2m?�sin2�ez: (13)

This expression is identical to the effective magnetic field
Beff ¼ 2mat� created by rotating cold gases [15] except for
the factor sin2� and the substitution of atomic mass with
the mass of the quasiparticles. This can be understood as
follows: The particles feeling the magnetic field are the
polaritons rather than the atoms. According to Eq. (4) these
particles are a superposition of photonic and matter exci-
tation and only the matter component, proportional to sin2�
and with effective mass m?, is subject to rotations. For
sin2� ¼ 0 there is no coupling between light and medium
and thus no gauge potential emerges for the polariton
which in this case is just the electromagnetic field.

From Eq. (13) we obtain magnetic length and filling
factor

L2
mag ¼ @

B
¼ 1

4�
	R
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; (14)
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Here we introduced the rotation velocity vrot ¼ �R of the
medium at its circumference �max ¼ R, N� is the number
of DSPs and 	 is the wavelength of the probe field. Taking
realistic values of 	 ¼ 500 nm, R ¼ 5 mm, � ¼ 1 kHz
and values of vg between 103 m=s down to 20 m=s [25],

yields a degeneracy of the lowest Landau level
R2=ð2�L2

magÞ between 100 and 5� 103.

The adiabaticity condition imposed by rate (11) reads
Re½�?

rot� � !c, where the cyclotron frequency !c �
B=m? ¼ 2�sin2� sets the time scale of the relevant phys-
ics. Analogously we obtain a lower bound for the rotation
frequency by the adiabaticity condition from rate (12)

leading to !c � Dk
diff=L

2
p. This yields the following con-

ditions

1
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Labs
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Labs

1

cos4�
: (16)

Here Lp stands for the characteristic length scale of the

stationary DSP along the z axis. The right side is easily
fulfilled, since for a typical group velocity vg 	 103 m=s

the resulting mixing angle is cos2� ¼ vg=c 
 10�5 and

the absorption length is of the order Labs 	 100 �m�
1 cm. The ratio vg=Labs is the inverse time scale it takes

a photon to travel one absorption length. The left-hand side
of (16) demands that the rotation frequency is larger than
this inverse decay time in order to see interesting physics.
There are numerous experimental systems which seem

suitable for the implementation of the above suggested
scheme. The choice of the systems is guided by the possi-
bility to create strong and controllable interactions be-
tween individual polaritons to eventually explore effects
such as the bosonic fractional quantum Hall effect. In
addition to contact interactions of cold atoms in a trap it
is possible to create long-range interactions by exploiting
the interaction properties of the matter component of the
polaritons.
Bulk materials.—A straightforward realization is to use

rotating bulk media. Rare-earth-ion doped glasses exhibit
long coherence times up to T2 ¼ 82 ms [26] and are
proposed to be used for quantum computation [27].
Interactions can be created via electric dipole-dipole cou-
plings involving different principal electronic states or via
photonic nonlinearities. A table listing several experimen-
tal data of rare-earth-ion dopants can be found in [28]. Also
n-doped semiconductors as GaAs [29] can create strong
interactions by exploiting the Coulomb interaction be-
tween excitons, which constitute the matter component
of the polaritons. However caused by the coupling of the
electron spin to the nuclear spins coherence times are only
of the order of several ns and thus too short. To overcome
this one can use a 28Si-based host, which does not posses a
nuclear spin, and shows coherence times up to 60 ms [30].
Rotating optical lattices.—In [31] the creation of a

rotating optical lattice with frequencies up to several kHz
is reported. With this one can uniformly rotate cold atoms
or polar molecules as a bulk medium and at the same time
take advantage of the high-precision techniques of this
field. To create long-range interactions one may think of
using Rydberg atoms or polar molecules. Recent works on
Rydberg atoms report of the successful creation of
Rydberg excitations in a BEC [32] with blockade radii of
rb ¼ 5:4 �m. The lifetime of these systems is of the order
of 	100 �s [33]. Alternatively one could think of loading
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the optical lattice with polar molecules. There have been
suggestion to create single-photon nonlinearities with
these molecules [34] and investigations about the experi-
mental feasibility [35] stating that lifetimes of about 	1 s
are achievable. It should be noted that cold atoms and polar
molecules can also be embedded in solid-state matrices
[36], which can then be physically rotated.

To observe an artificial magnetic field for the DSP we
suggest two possibilities. A first indication would be the
observation of a Lorentz force acting on a slow-light polar-
iton F ¼ 1

m?
hp̂i � B. Shining in a probe beam with a small

transverse extent along a propagation axis shifted from the
axis of rotation will result in a small deflection of the
incoming light pulse from its initial direction [37]. The
deflection angle is given by �
 ¼ !c�

L
vg
, where � is the

distance of the initial beam axis from the rotation axis.
Using a stationary-light setup the outcome strongly de-
pends on the initial mode profile. Creating the stationary
DSPs using modes of the probe beams that are not eigen-
modes of the angular momentum operator, e.g., higher
Hermite-Gaussian modes, and releasing after a time will
result in an image rotation. The angle of rotation is directly
proportional to the storage time of the probe light inside the
medium. If the initial state is a superfluid of DSPs [6] the
artificial magnetic field leads to the formation of a vortex
lattice. The structure of the lattice will be well visible upon
releasing the stationary polaritons providing a convenient
means to observe the lattice.

In summary we presented a possible scheme to create
artificial gauge fields for photonic quasiparticles, the so-
called dark-state polaritons. The size of the resulting ef-
fective magnetic field is large enough to create highly
degenerate Landau levels. Observation of the artificial
fields is possible by turning the stationary-light polaritons
into slow-light polaritons [11] and detecting the transverse
emission profile of light, which also allows a direct obser-
vation of phase profiles. We suggested several physical
systems which, to our knowledge, seem suitable for the
implementation of the above ideas. Polaritons not only
have a number of technical advantages over electrons or
cold atoms, they also offer to address new physical ques-
tions. E.g., making use of the fact that the polariton setup
can be made an open system it should be possible to study a
flux equilibrium, where dissipation drives the system au-
tomatically into highly correlated states [38]. Furthermore
quantum Hall phenomena for multicomponent polaritons
[13] including interspecies conversion are feasible.
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