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We present an optomechanical displacement transducer that relies on three cavity modes parametrically

coupled to a mechanical oscillator and whose frequency spacing matches the mechanical resonance

frequency. The additional resonances allow reaching the standard quantum limit at a substantially lower

input power (compared to the case of a single cavity mode), as both sensitivity and quantum backaction

are enhanced. Furthermore, it is shown that in the case of multiple cavity modes, coupling between the

modes is induced via reservoir interaction, e.g., enabling quantum backaction noise cancellation.

Experimental implementation of the schemes is discussed in both the optical and microwave domain.
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Introduction.—High frequency nano- and micromechan-
ical oscillators have received a high degree of attention
recently. They have been used as sensitive detectors, e.g.,
for spin [1] or mass [2], but also carry intrinsic interest for
the study of small scale dissipation of mechanical systems
[3], quantum limited motion detection [4], and backaction
cooling of vibrational modes [5]. These studies have in
common that a sensitive motion transduction is required,
which can be implemented by parametric coupling to an
optical, electrical, or microwave resonator. The ideal trans-
ducer should (i) have a high sensitivity and possibly oper-
ate at the standard quantum limit (SQL) and (ii) should
operate at low power. The latter is experimentally advanta-
geous, as high power may cause excess heating due to
intrinsic losses. The former pertains to the minimum un-
certainty in motion detection and arises from the trade-off
between measurement imprecision, inherent to the meter
(i.e., detector shot noise), and (for linear continuous mea-
surements) inevitable quantum backaction (QBA) [6,7].
These processes are characterized by the displacement
spectral density �Sxxð�Þ and the QBA force spectral density
�SFFð�Þ [8]. For a parametric motion transducer, where a
single cavity mode (with angular frequency !0 and energy
decay rate �) is parametrically coupled to a mechanical
oscillator [9], the spectral densities are given by
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64G2P
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Here P is the input power and the optomechanical coupling
strength is determined by the cavity frequency shift due to

mechanical displacement: G ¼ d!0

dx . Equation (1) satisfiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sxx½��SFF½��p � @=2, which is a consequence of the

Heisenberg uncertainty principle [10]. The canonical way
to lower the power to reach the SQL is to increase the

cavity finesse, i.e., decreasing �. However, Eq. (1) reveals a
fundamental deficiency: decreasing � for fixed P only
improves readout sensitivity as long as the mechanical
signal (angular frequency �m) lies within the cavity band-
width, i.e., �m < �, while for �m > � the displacement
sensitivity experiences saturation. Physically this phe-
nomenon is readily understood; the mechanical motion
modulates the cavity field and creates motional sidebands
at !0 ��m, which constitute the readout signal. For � �
�m, i.e., in the resolved sideband regime (RSB), the side-
bands are suppressed.
Here we present a readout scheme where this fundamen-

tal limitation is overcome by placing two auxiliary cavity
resonances at !0 ��m around the central driven reso-
nance (cf. Fig. 1). This enables resonant sideband buildup
and causes a substantial decrease in the power required to
reach the SQL. Moreover, we show that this scheme, when
applied to the case of two resonances, can lead to quantum
backaction interference without the requirement of having
a dissipative parametric coupling [11].
Theoretical model.—In this section, we present the theo-

retical framework to describe multiple cavity modes para-
metrically coupled to a mechanical degree of freedom with
frequency �m and effective mass meff . The cavity features

FIG. 1 (color online). Illustration of the triple mode transducer
scheme. Auxiliary cavity resonances at !0 ��m permit reso-
nant motional sideband buildup.
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several equidistant modes at frequencies!k ¼ !0 þ k � ��
(k 2 Z), described by the annihilation (creation) opera-

tors âk (âyk ), where �� denotes the spacing between adja-

cent cavity modes. A driving field at frequency !0 (input
power P) is coupled to the cavity. Furthermore, the opti-
cal modes are parametrically coupled to the mechanical

degree of freedom âm (âym) and zero point motion x0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@=2meff�m

p
via the interaction Hamiltonian [12]

Ĥ int ¼ @x0
X
k;l

Gâyk âlðâm þ âymÞ: (2)

A geometric factor, coming from the mode overlap inte-
gral, is assumed (for simplicity) to be unity. Cavity damp-
ing is modeled by coupling the cavity modes to a harmonic
oscillator bath via the damping Hamiltonian

Ĥ damp ¼ i@
X
k

Z þ1

�1
d!½g�kð!Þb̂!âyk � gkð!Þâkb̂y!�: (3)

The bath operators obey the commutation relations

½b̂!; b̂y!0 � ¼ �ð!�!0Þ. In the following, we will consider

a classical harmonic oscillator characterized by the posi-

tion q̂ ¼ x0ðâm þ âymÞ and damping rate �m. This treat-
ment is justified, as we are solely interested in the
transduction properties of the cavity and the quantum
backaction coming from the quantized nature of the field.

We eliminate the bath in theMarkovian limit [13] setting

gkð!Þ ¼ ffiffiffiffi
�

p
. Surprisingly, Ĥdamp does not only couple the

cavity modes to the dissipative bath but also couples the
modes among each other via the reservoir dynamics
[cf. Eq. (4)]. This off-resonant interaction is well known
in laser theory (where it is responsible for Petermann
excess noise [14]), but has (to the authors’ knowledge)
never been applied to the context of opto- or electrome-
chanics. In the next step, we derive the Heisenberg-
Langevin equations (HLE) for the optical modes, where
the classical drive is eliminated by moving to a rotating

frame at the drive frequency and subsequently transform-

ing to the general quadrature fluctuations X̂k;� �
e�i�ðâk � hâkiÞ þ ei�ðâyk � hâyk iÞ. We emphasize that

choosing one global rotating frame for all modes is essen-
tial, as it enables us to treat off-resonant interaction terms
(to first order). These are known to account for quantum
limits [15]. Explicitly the linearized HLE for the canonical

quadrature fluctuations X̂k ¼ X̂k;�¼0 and Ŷk ¼ X̂k;�¼�=2

are
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X
l
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(4)

Solving for the canonical quadratures allows us to trans-
form to the �-dependent general quadrature. The global
phase of the input field is chosen in the way that �� ¼ �hâji
and the optomechanical coupling rate gm ¼ 2Gx0 �� are
real [16]. The noise operators in the HLE are � corre-

lated: h�X̂in½t��X̂in½t0�i ¼ h�Ŷin½t��Ŷin½t0�i ¼ �ðt � t0Þ,
h�X̂in½t��Ŷin½t0�i ¼ h�Ŷin½t��X̂in½t0�i� ¼ i�ðt� t0Þ. We
can account for intrinsic cavity loss by introducing a
second loss channel in Eq. (4) characterized by the internal
loss rate �0. It will appear in the results as the degree of
overcoupling �c ¼ 1� �0=� [17]. For multiple cavity
modes, the output quadrature fluctuations are given by a
generalized input-output relation [18]

X̂ out
� þ X̂in

� ¼ ffiffiffiffi
�

p X
k

X̂k;�: (5)

Triple mode transducer.—Having introduced the theo-
retical model, we calculate the output spectrum of a cavity
with three optical modes, spaced by the mechanical reso-

nance frequency, i.e., �� ¼ �m. From Eq. (4), we calculate
the quadrature fluctuations in Fourier space. Using the
multimode input-output relation [Eq. (5)], the spectrum
of the output fluctuations is derived. Importantly, the off-
resonant reservoir coupling terms [ / �=2 in Eq. (4)] pre-
serve a flat shot noise spectrum for the decoupled (gm ¼ 0)
cavity. The measurement noise spectrum Stotxx;�ð�Þ ¼
Sxx;�ð�Þ þ j�0ð�Þj2SFFð�Þ is obtained by scaling the out-
put fluctuations to the mechanical signal [19]. The classical
motion of the mechanical oscillator, characterized by its
bare susceptibility �0ð�Þ, is not affected by the coupling to
the cavity field, as dynamical backaction effects are absent
[20]. The shot noise background is

Striplexx;� ð�Þ ¼ 1

sin2�

x20�

�cg
2
m

�
1þ 4�2ð�2

m ��2Þ2
�2ð�2

m � 3�2Þ2
�
: (6)

The sensitivity is maximized for � ¼ �=2, implying that
the information on the mechanical signal is encoded in the

phase quadrature. Comparing Striplexx;� ð�Þ to the single reso-

FIG. 2 (color online). The measurement noise spectrum
Stotxx;�¼�=2ð�mÞ [normalized to the zero point motion spectral

density S
zpf
xx ð�mÞ ¼ @j�0ð�mÞj] for the triple cavity mode trans-

ducer as a function of the input power (with � ¼ �m=10)
compared to the single mode case. The traces in the horizontal
plane follow the minima as a function of the normalized cavity
lifetime.
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nance transducer, we note that the transduction properties
of a low frequency signal remain unchanged, i.e.,

S
single
xx;� ð0Þ=Striplexx;� ð0Þ ¼ 1. However, the sensitivity at the me-

chanical resonance frequency (as shown in Fig. 2) is dra-
matically increased

Ssinglexx;� ð�mÞ=Striplexx;� ð�mÞ ¼ 1þ 4�2
m

�2
: (7)

For systems that operate well into the RSB regime, such as
toroidal microresonators [21] or superconducting micro-
wave resonators [4], this factor is more than	100 and thus
represents a major reduction. Based on the Heisenberg
uncertainty principle for continuous position measure-
ments, one expects that the enhanced sensitivity also im-
plies an increased quantum backaction force spectral
density. Physically the latter can be viewed as the beat of
the carrier (at !0) with vacuum fluctuations at !0 þ�m,
which resonantly heat the mechanical oscillator. The ra-
diation pressure force fluctuations are given by

�F̂rp½�� ¼ @gm
2x0

X
k

X̂k½��: (8)

Indeed, in the same way that the shot noise is reduced, the

backaction force spectral density S
triple
FF ð�Þ is increased,

and the Heisenberg limit of the single resonance transducer
is recovered:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Striplexx;�¼�=2ð�Þ �StripleFF ð�Þ

q
¼ @

2
ffiffiffiffiffiffi
�c

p : (9)

We emphasize that the recovery of the Heisenberg limit
requires the off-resonant coupling terms [cf. Eq. (4)].
Moreover, the triple transducer has the significant advan-
tage over a single cavity mode transducer that the SQL is

reached at substantially lower power: Psingle
SQL =Ptriple

SQL 

4�2

m=�
2 [22] (cf. Fig. 2). Moreover, the enhanced QBA

itself can be a valuable resource. Indeed, many quantum
optomechanical experiments rely on QBA to be the domi-
nant force noise, such as in experiments relating to pon-
deromotive squeezing [23] or two beam entanglement [24].

Dual mode scheme.—Within the framework of the mul-
timode transducer theory, we can also consider the situ-
ation of two resonances spaced by the mechanical
resonance frequency [25,26]. The situation differs from
the triple mode scheme, as only the anti-Stokes process
is resonantly enhanced by pumping the lower frequency
mode. This results in net cooling of the mechanical degree
of freedom, because every scattering process annihilates
one phonon [27]. Then the response to an external force,
e.g., a thermal Langevin force, a signal force, or quantum
Langevin forces, is suppressed as a result of the damped
mechanical motion. Consequently, the transduction prop-
erties are not ideal. Next, we calculate the QBA spectral
density from Eq. (8):

SdualFF ð�Þ ¼ @
2

x20

g2m�ð�m � 2�Þ2
4ð�m ��Þ2�2 þ �2ð�m � 2�Þ2 : (10)

Then an estimate for the final occupancy of the mechanical

mode nf ¼ hâymâmi is given by the quantum noise ap-

proach [7]. Unexpectedly, compared to the single reso-
nance dynamical backaction cooling [28,29], the
quantum limit increases by a factor of 9:

nf
nf þ 1

¼ SdualFF ð��mÞ
SdualFF ðþ�mÞ

; ) nf 
 9
�2

16�2
m

: (11)

This is understood from the constructive quantum noise

interference at � ¼ ��m [cf. Fig. 3, ð ffiffiffi
1

p þ ffiffiffi
4

p Þ2 ¼ 9].
However, the QBA spectrum in Fig. 3 reveals an additional
striking feature. At� ¼ �m=2, the quantum noise exactly
cancels. This is a direct consequence of the reservoir
coupling terms in Eq. (4). Omitting these terms yields a
classical interference pattern, shown by the thick dashed
curve in Fig. 3. The shape of the QBA spectrum suggests to

tune the mode spacing to �� ¼ 4�m and drive the cavity on
the red wing of the upper resonance (cf. Fig. 3, black
circle). Then the heating term vanishes, i.e., SdualFF ð��mÞ ¼
0 (in the rotating frame). However, an exact analysis, using
a covariance approach [30], reveals that finite linewidth
effects lead to a power dependent quantum limit, i.e., nf 

2g2m=�

2
m. As the cooling rate saturates, when gm ap-

proaches �=2, one can find an upper limit for nf by as-

suming gm < �=2 [15]. The same analysis for the canoni-
cal two mode cooling yields nf 
 ð9�2 þ 14g2mÞ=16�2

m.

With respect to the transduction properties of the dual
scheme, we note that in cooling experiments the QBA
should not be viewed as measurement noise but rather
contributes the signal itself. This is corroborated in the
case of ground state cooling, where the field fluctuations
conserve the zero point fluctuations of the mechanical
oscillator independently of its quantum nature, i.e.,
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FIG. 3 (color online). The normalized quantum backaction
force spectral density SdualFF ð�Þ=SdualFF ðþ�mÞ (thick solid line) is
plotted together with the result from a classical model (thick
dashed line). The reservoir interaction between the modes leads
to complete noise cancellation at � ¼ �m=2. The thin dashed
lines indicate the backaction force coming from two uncorre-
lated modes.
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R
d�j�effð�Þj2 � SdualFF ð�Þ � 2�x20 [the effective suscepti-

bility �effð�Þ is the same as in Ref. [15]].
Experimental implementation.—The experimental chal-

lenge in the design of a multimode transducer lies in
matching the cavity mode spacing with the resonance
frequency of the mechanical oscillator without adding
additional damping. The canonical setup is a Fabry-Pérot
cavity where the free spectral range matches the resonance
frequency of the harmonically suspended back mirror.
However, difficulties might arise from differing mode
overlap integrals [31]. These challenges can be circum-
vented in a more general way, adaptable to optical, elec-
trical, and the microwave domain. As illustrated in Fig. 4,

three degenerate cavity modes fâ; b̂; ĉg are coupled

in series via the linear interaction @gc½b̂ðây þ ĉyÞ þ
b̂yðâþ ĉÞ�. In the microwave domain, this interaction
can be realized by coupling of three superconducting quar-
ter or half wave resonators (via inductive or capacitive
coupling as shown in Fig. 4). In the optical domain, it
can be achieved by coupling of degenerate cavity modes
via partially transparent mirrors or evanescent field. In
addition, only one mode (ĉ) is coupled to the mechanics

by Ĥsingle
int ¼ @x0Gĉ

yĉðâm þ âymÞ. In the regime of strong

mode coupling, when gc > �, the originally degenerate
cavity modes exhibit normal mode splitting. The new
cavity eigenmodes can then be represented in a basis of
dressed states fâ0; âþ; â�g with eigenfrequencies

f!0; !0 �
ffiffiffi
2

p
gcg.

The splitting
ffiffiffi
2

p
gc can be matched to the mechanical

resonance frequency by appropriately tuning the coupling
rate. Transforming to the dressed state basis, one finds that
the operator ĉ is proportional to the sum of the dressed state

operators. Replacing ĉ in the parametric interaction Ĥsingle
int

results in a multimode interaction as given by Eq. (2).
Indeed, a dual mode coupling of this kind has recently
been demonstrated using toroidal microcavities [32] in this

proposed way. Moreover, tunable mode splitting between
counterpropagating modes has also been achieved [33].
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FIG. 4. (a) Three degenerate optical modes are coupled via
semitransparent mirrors. (b) Three LC oscillators are capaci-
tively coupled in series. While mode â is connected to an
external drive, mode ĉ is parametrically coupled to a mechanical
oscillator. When the coupling rate gc exceeds the individual
decay rate, the spectrum exhibits normal mode splitting.
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