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Deep minima in Heðe; 2eÞHeþ triply differential cross sections are traced to vortices in atomic wave

functions. Such vortices have been predicted earlier, but the present calculations show that they have also

been observed experimentally, although not recognized as vortices. Their observation in ðe; 2eÞ measure-

ments shows that vortices play an important role in electron correlations related to the transfer of angular

momentum between incident and ejected electrons. The vortices significantly extend the list of known

features that summarize the general picture of electron correlations in impact ionization.
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Measurements of the momentum distributions in elec-
tron scattering processes have long been used to study
electron correlations in the two-electron final states [1].
Experiments where two outgoing electrons are measured in
coincidence, namely ðe; 2eÞ measurements of triply differ-
ential cross sections (TDCS), have been of particular in-
terest since they directly probe electron correlations in the
final state. Because electron correlations are central to
electron motion in atoms, molecules, and solids, a com-
plete understanding of their effect in the most direct ex-
perimental observation of them, namely ðe; 2eÞ
measurements, are of continuing interest for the quantum
structure of any species containing two or more electrons.
Theory is now able to accurately model ðe; 2eÞ processes
for H-atom [2–4] and He-atom targets [5–8]. From these
studies a general picture of ðe; 2eÞ electron correlations has
emerged. This picture identifies structures in the ðe; 2eÞ
electron distributions with a small number of specific
interactions and quantum effects in two-electron wave
functions [7,9]. It was speculated that the classifications
given in Ref. [9] account for all structures that are ob-
served, and that no further features would emerge in more
accurate calculations and future experiments. In this Letter
we show that the list in Ref. [9] is incomplete and that an
unexplained feature [8] points to a new explanation for a
pronounced minima observed in ðe; 2eÞ experiments [10–
12].

The effects listed in Ref. [9] are quite comprehensive,
but are unable to identify the origins of an isolated exact
zero in the ðe; 2eÞ cross section. The exact zero is repro-
duced with theories employing highly correlated final
states, but these calculations do not give a deeper under-
standing of how both the real and imaginary parts of
transition matrix elements could vanish exactly at a point

[8] rather than along a nodal surface. At best they can point
to an ‘‘interference effect’’ as the origin of an exact zero in
measured and calculated TDCS. In this Letter wewill show
that the exact zero in the theory of Ref. [8] and, by
implication, in the measurements of Refs. [11,13], corre-
sponds to a vortex in a correlated two-electron wave func-
tion. It is further shown that isolated zeros of transition
matrix elements always correspond to vortices. This un-
expected relevance of vortex motion to electron correla-
tions in atoms and molecules provides a new tool to
understand the dynamics of quantum systems. It also real-
izes an insight put forward earlier [14], namely, that vor-
tices in atomic wave functions must have experimental
consequences. The confirmation that vortex structures
have been observed thereby opens the way for experimen-
tal study of this aspect of correlated electrons.
That vortices in atomic wave functions appear as ob-

servable zeros of electron momentum distributions
emerges from time-dependent calculations of ionization
by proton impact [15]. In those studies, vortices in the
semiclassical, time-dependent wave functions form at
times close to the time of impact and remain at large times
corresponding to asymptotic distances r ¼ kt where elec-
trons with momentum k are detected.
The relation between wave functions and momentum

distributions is central to understanding vortices in mo-
mentum distributions. This relation has been called [15,16]
the ‘‘imaging theorem.’’ For one-electron species the rela-
tion is

lim
t!1t

3=2jc ðr ¼ kt; tÞj ¼ jAðkÞj; (1)

where AðkÞ is the ionization amplitude in atomic units.
This expression omits phase factors in the relation between
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wave functions and amplitudes. They are not important for
vortex analysis since zeros are not affected by phases.

Equation (1) is often implicitly assumed in measure-
ments of momentum distributions, yet the implications of
the connection between ionization amplitudes and
Schrödinger wave functions is seldom exploited to inter-
pret structure in AðkÞ. This is understandable, since Eq. (1)
is seldom used for actual calculations. It is implicit, how-
ever, that Eq. (1) may be helpful for interpreting structure
even though it is not actually used to compute AðkÞ. That is
the case here in that ionization amplitudes have properties
of single-particle wave functions and zeros in these ampli-
tudes can be analyzed using the theory of vortex dynamics
given in Ref. [14]. Using that theory it is easy to show that a
first order zero in the single-particle amplitude must be a
vortex. Integration of the normalized probability current,

called the velocity field v ¼ Imðrc
c Þ around a closed loop

encircling the vortex equals 2�. Note also that this relation
is not affected by analytic phase factors. By first order zero
in an amplitude AðkÞ we mean that the amplitude may be
expanded in a power series about the zero a, and the lowest
order term is linear in k� a. This excludes zeros that
appear owing to essential singularities as occurs, for ex-
ample, due to the electron-electron interaction discussed in
Ref. [8]. The vortex is characterized by a vortex line
defined as a line along which both the real and imaginary
parts of AðkÞ vanish. All of these properties were verified
for the zeros reported in Ref. [8].

To employ the imaging theorem for electron impact, a
representation where the incident electron is described by a
localized wave packet is used. Then both the incident
electron a and the target electron b are initially localized
in space. The final state is then an outgoing two-electron
wave packet and one may set both ra ¼ kat and rb ¼ kbt
then take the limit as t ! 1. In this case we have

lim
t!1t

3jc ðra ¼ kat; rb ¼ kbt; tÞj ¼ jAðka; kbÞj (2)

aside from possible multiplicative constants. Energy con-
servation is understood so that k2a þ k2b is fixed. The im-

portant point is that the ionization amplitude Aðka; kbÞ
relates directly to the wave function for two electrons in
the asymptotic, free particle, limit. Exact zeros appear in
momentum distributions; thus the question of their vortex
nature immediately arises.

These zeros may be analyzed in the spirit of Ref. [14];
however, it is necessary to discuss the relationship of zeros
and vortices in multiparticle wave functions where the
dimensions of variable space are greater than three. In n
dimensions the requirement that the real and imaginary
parts of the generic amplitude �ðx1; x2; . . . ; xnÞ � �ðfxgÞ
vanish defines a n� 2 dimensional hypersurface. It can be
shown that integration of the velocity field along a curve in
the n-dimensional space enclosing an isolated zero of �
equals 2� just as in three dimensions. This point will be
elaborated further in a longer, follow-up paper giving de-
tails of the analysis presented here.

To analyze the n-dimensional vortices further we note
that, at zeros in n dimensions, one can always transform to
coordinates such that �ðfxgÞ vanishes linearly in two co-
ordinates x1, x2 and quadratically in the remaining n� 2
coordinates. For future reference, we call x1 and x2 the
vortex coordinates. Then the analysis of Ref. [14] carries
over almost without change to spaces of arbitrary dimen-
sion. In these spaces the velocity field vðxÞ ¼ Imð��r��
�r��Þ=j�j2 / ðx1x̂2 � x2x̂1Þ=j�j2 circulates around the
zero and is perpendicular to the ‘‘radial’’ vector � ¼
x1x̂1 þ x2x̂2. Integration of vðxÞ around a path enclosing
the zero gives the value of 2�. The zeros of
�ðx1; x2; . . . ; xnÞ lie on the vortex hypersurface. By fixing
the coordinates x3; . . . ; xj�1; xjþ1; . . . ; xn at the values xi ¼
ai, i ¼ 3 . . . n, i � j of the zero of �, one generates an
amplitude fðx1; x2; xjÞ ¼ �ðx1; x2; a3; . . . ; aj�1; xj;

ajþ1; . . . an; Þ that has a vortex line in the three-dimensional

reduced space x1, x2, xj. The analysis of Ref. [14] can then

be directly applied to all of the reduced spaces of three
dimensions corresponding to different choices of j.
Murray and Read [11] measured the ðe; 2eÞ cross section

in the symmetric geometry and found a deep minimum at
an incident energy of 64.6 eV for electrons. In the present
case, the momenta ka, kb with energy conservation define

a variable space of five dimensions. For arbitrary k̂a, k̂b the
measured momentum distribution is an incoherent sum of
the triplet and singlet amplitudes and an exact zero is
unlikely. For the symmetric geometry only the singlet
amplitude contributes so that a vortex in the singlet wave
function could produce a zero in the momentum distribu-
tion. The calculations of Refs. [7,8] reproduce this mini-
mum and locate it near an exact zero. We have repeated the
calculations and do indeed find a vortex, described below,
near the minimum in the measured TDCS. Since the vortex
center must lie at an exact zero, this proves that the
minimum is due to a vortex.
To analyze the vortex structure employing Eq. (2) it is

essential to work with a pure state described by a wave
function, as for the singlet amplitude. The vortex coordi-
nates are the symmetric kþ ¼ ðka þ kbÞ=2 and antisym-
metric kab ¼ ðka � kbÞ=2 linear combinations of the final
state momentum vectors. As is customary for collisions the
incident momentum Ki is the z axis and the x axis is in the
plane of Ki and kþ with the y axis along Ki � kþ as in
Fig. 1. The symmetric geometry is defined so that the
vector kab is perpendicular to the xz plane and ka ¼ kb.
The amplitude vanishes linearly in the x and z components
of kþ, quadratically in the y component of kþ, and quad-
ratically in the x and z components of kab, confirming that
these are the appropriate vortex coordinates. The y com-
ponent of kab is set by energy conservation and is not an
independent variable.
The experimental data of Ref. [11] are compared with

the DS3C theory of Ref. [7] in Fig. 2, where 2� is the angle
between the outgoing electron momenta and �þ ¼ 67:5�.
The computed TDCS agrees qualitatively with the data of
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Ref. [11], but is sensitive to the approximations employed
for the initial helium wave function. It is seen that the
present approximation does not give a minimum at exactly
the same point as found experimentally. Rather, for �þ ¼
67:5�, the experimental minimum is at� ¼ 70�, while the

theory has� ¼ 62:5�. With more accurate wave functions
the position of the minimum shifts but still retains the
features identified here [17].
While our calculations find a minimum in the plot shown

in Fig. 2, this minimum does not correspond to an exact
zero. An exact zero is located on a contour plot of the
singlet amplitude in the kþx; kþz plane shown in Fig. 3 for
an incident energy of 64.6 eVand the initial and final state
wave functions given in Refs. [7,8]. We see that there is an
exact zero at kþ ¼ ð0:522; 0; 0:31Þ corresponding to an
angle �þ ¼ 59:3� and a value of � ¼ 60:0�. A plot of
the computed TDCS that passes through the exact zero is
shown in Fig. 2. To show that the exact zero is a vortex,
small vectors parallel to the direction of the velocity
vðkþx; kþzÞ are shown in Fig. 3. The circulation confirms
that the zero in the momentum distribution is, in fact, a
vortex. Integration of the velocity field around the zero
gives 2� as it must for a single-valued function which
vanishes linearly [14]. Conversely, a value of 2� for the
integral of the velocity field on a closed path shows that
there is a first order zero enclosed by the path. In this way
an exact zero is identified without actually hitting it.
The data have a minimum at � ¼ 70�. To analyze the

depth of the minima Murray and Read [13] deconvolved
their data by fitting to a high order polynomial convoluted
with an experimental width �� ¼ w ¼ 8�. Their fitted
curve is shown in Fig. 2(b). The deep minimum indicates
that there is a zero and hence a vortex close to � ¼ 69:6�
and �þ ¼ 67:5�.
In principle, the deconvolved data in Fig. 2 can be used

to fit the TDCS to a linear vortex kþv form, i.e.,

AðkþÞ ¼ C � ðkþ � kþvÞ; (3)

where C ¼ ðCx; 0; CzÞ is an array of fitting constants Cx

and Cz. Since the deconvolution finds the vortex position,
we need only fit C. We find Cx ¼ �0:160þ 0:806i
and Cz ¼ 0:664þ 0:195i. The resulting TDCS shown in
Fig. 2(b) fits the data near the minimum, but shows some
deviation at � ¼ 80� indicating that higher order terms

FIG. 2 (color online). (a) The experimental results for
Heðe; 2eÞHeþ with Ea ¼ Eb ¼ 20 eV and �þ ¼ 67:5� from
Ref. [13] (blue dots) compared with the TDCS calculated using
the DS3C wave function (red dashed line). Also shown is a
theory curve for �þ ¼ 59:3� which goes through the DS3C
vortex. (b) Comparison of the deconvolved TDCS of Ref. [13]
with a fit to the vortex of Eq. (2). The horizontal lines indicate
the width of the convolution function of Ref. [13]. Also shown is
a fit obtained by varying parameters in the DS3C amplitude.

FIG. 3 (color online). Contour plot of jAðka;kbÞj on a loga-
rithmic scale. Vectors are drawn in the direction of the current v
showing that the minimum in Fig. 2 is near a vortex. The
diagonal lines trace the vector kþ as the angle � is varied to
produce the DS3C curves in Fig. 2.

FIG. 1 (color online). (e:2e) coplaner symmetric geometry,
showing initial Ki and final ka; kb momentum vectors along
with kþ and kab and the angles �þ, and �. The vector kab is
perpendicular to the xz plane and kþ lies in that plane.
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are needed. Rather than employ higher order terms we have
supposed that the functional form of the DS3C amplitude is
correct near the vortex, and have adjusted parameters in
that amplitude to fit the vortex position and width. The
resulting fit agrees well with the data thus the zero in both
experiment and the DS3C cross sections indicate a vortex
in the ðe; 2eÞ momentum distribution.

We do not find a vortex in the triplet amplitude, however,
since the singlet amplitude is the sum of the direct
Aðka; kbÞ and exchange Aðkb;kaÞ amplitudes it follows
that both the direct and exchange amplitudes have vortices.
To analyze the vortex in the direct amplitude, it is useful to
employ the momenta ka and kb with ka fixed in the xz
plane at the value corresponding to the vortex in Fig. 3.
Then the zero is at a value of kb found by rotating the pair
ka; kb rigidly about the z axis so that ka lies in the xz plane.
In this frame, the initial state and hence the direct ampli-
tude are invariant to reflections in the plane of Ki;ka and
bound states of electron b have a single component of
orientation perpendicular to the xz plane [18]. The vortex
shows that the continuum states are also oriented with
nonzero components of angular momentum in directions
perpendicular to the xz plane.

The connection with orientation shows the relation of
vortices to atomic dynamics. Semiclassically, the angular
momentum vectors of incident electrons scattered by at-
tractive potentials point parallel to the y axis if incident
electrons are scattered upward toward positive x in the
coordinate system employed here. The corresponding cur-
rent circulation is counterclockwise around the y axis. In
the collision, the incident electron transfers angular mo-
mentum to electron b so that it acquires some angular
momentum and therefore also circulates in the counter-
clockwise sense. If dipole transitions dominate then the
vortex position is at kax ¼ kaz ¼ 0 and the vortex line is
along the y axis. The presence of other multipoles shifts the
zero away from this line to places where kax and kaz are
nonzero. It is somewhat surprising that the location of the
vortex seen in collisions at relatively low impact energies
follows this simple prescription.

Previous interpretations of the exact zero have attributed
it to interference effects [7,8,10,17]. Reference [17] con-
trasts the interference of partial waves with the interference
between screening and nonscreening terms postulated in
Refs. [7,8]. As discussed in Refs. [8,17], the latter effect
cannot be present in atomic hydrogen where calculations
find a weak minimum. Weak minima that are not isolated
zeros can occur where either ReA or ImA vanish, whereas
both terms must vanish at the same point for vortices. Our
calculations for H (not shown) find no vortices indicating
that the minima seen in DS3C calculations [8] for H differ
from those in He.

The calculations of Ref. [17] fit the experimental data
very accurately at �þ ¼ 67:5� and E ¼ 64:6 eV up to a
normalization constant. We have used the parametrized
DS3C to fit the minima at 67.5� found in Ref. [17] for E ¼

64:6 eV, and then evaluated the vortex position for that fit.
We find a vortex at �þ ¼ 62:1� and � ¼ 70� in good
agreement with the position of the deepest minima found
in Ref. [17].
In retrospect one can recognize exact zeros in earlier

calculations for other systems. For example, exact zeros
are seen in Coulomb Born calculations of inner shell
ionization [19]. In that case, a partial wave analysis shows
vortices due to continuum-state orientation.
In summary, the present results complement the list of

structures in ðe; 2eÞ TDCS given in Ref. [9]. They also
realize the insight given in Ref. [14] that vortices in atomic
wave functions must have observational consequences.
Such consequences have been predicted theoretically and
are now verified for actual observations.
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