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It is difficult to simulate quantum systems on classical computers, while quantum computers have been

proved to be able to efficiently perform such kinds of simulations. We report an NMR implementation

simulating the hydrogen molecule (H2) in a minimal basis to obtain its ground-state energy. Using an

iterative NMR interferometer to measure the phase shift, we achieve a 45-bit estimation of the energy

value. The efficiency of the adiabatic state preparation is also experimentally tested with various

configurations of the same molecule.
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Introduction.—It is well known that quantum algorithms
provide speedups towards classical algorithms in many
problems [1], e.g., Shor’s quantum factoring algorithm
[2]. In addition to the successful application of quantum
computation (QC) in computational study, QC can also be
used to simulate other quantum systems, an idea conceived
by Feynman [3]. The simulation of realistic quantum sys-
tems requires an exponential amount of resources on
current computers, due to the exponential-growing dimen-
sionality of Hilbert spaces. However, It is highly efficient
to simulate a physical system within the QC architecture
[4], i.e., costing only polynomial resources with respect to
the size of the target system. Several physical systems were
examined using this novel framework [5–11] and some of
them have been demonstrated on NMR [8,9,12] and ion-
trap [13] platforms. Based on the iterative phase estima-
tion, Aspuru-Guzik et al. proposed an algorithm [14] to
simulate a molecular system and calculate the energies of
the molecule. Very recently, Lanyon et al. [15] carried out
a key step towards the realization of this algorithm on a
photonic system to calculate molecular energies with a
20-bit precision.

The calculation of molecular energies is a fundamental
problem in computational quantum chemistry. On classical
computers, the resources required for a full simulation of
the molecular system scale exponentially with the number
of atoms involved, limiting such full configuration inter-
action (FCI) calculations of molecular energies to diatomic
and triatomic molecules [16]. Nevertheless, the calculation
could be done efficiently on a quantum simulator with
Aspuru-Guzik’s algorithm [14], where information of the
energy is coded to the phase shift of a quantum register and
measured by a quantum phase estimation algorithm (PEA).

In this Letter we implement a quantum molecular simu-
lation where all the algorithmic steps, including the adia-
batic state preparation (ASP), are completed on an NMR
quantum simulator. As a demonstration, the ground-state
energy of H2 molecule has been extracted to a precision of
45 bits. Furthermore, we give an experimental analysis of

ASP’s efficiency for different molecular configurations in
our example, which matches well with Aspuru-Guzik’s
theoretical prediction [14].
Hamiltonian of H2 molecule.—Because of the limitation

of current quantum computing technology, it is impos-
sible to demonstrate a large molecular energy calcula-
tion in FCI. So we exam the simplest situation: the
ground-state energy of Hydrogen molecule in minimal
STO-3G basis—a widely used basis set in FCI (for details,
see Ref. [17]). The electron’s Hamiltonian of H2 molecule
in Born-Oppenheimer approximation is H ¼ P

2
i¼1ðTi þP

2
j¼1 VijÞ þ

P
2
i;j¼1
i>j

Oij, where Ti is the kinetic energy of

the ith electron, Vij is the Coulomb potential energy be-

FIG. 1 (color online). (a) General schematic circuit for calcu-
lating molecular energies. (b) Molecular structure of quan-
tum register (CHCl3). (c) Pulse sequence for the adiabatic
process to prepare the 13C nucleus in the ground state j�i of
the molecular Hamiltonian H. (d) Pulse sequence to implement

the controlled-Uk operation, where � ¼ arctanð 2Hð1;2Þ
Hð1;1Þ�Hð2;2ÞÞ ¼

0:226, � ¼ �
2 � � ¼ 1:3458, � ¼ �0

k ��0
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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and d ¼
�

�Jwa
for the kth iteration. Totally 15 iterations are performed in

our experiment. The U sequences are optimized as we chose a
suitable � ¼ 1:941 121 725 626 05.
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tween the ith electron and the jth nucleus, and Oij is the

Coulomb potential energy between the ith and jth electron.
In this molecule of two nuclei and two electrons, each atom
has a 1s Gaussian-type function in STO-3G basis. Besides,
these two 1s functions compose one bonding orbital with
gerade symmetry and one antibonding orbital with unger-
ade symmetry. So there are 4 spin orbitals corresponding to
6 possible configurations. Considering the singlet symme-
try and spatial symmetry of its ground state, only two
configurations are relevant in the calculation, the ground-
state configuration j�0i and the double excitation configu-
ration j�2�2

1�1
i. Thus, the Hamiltonian matrix is (in atom

units, the nuclear distance r is 1.4 a.u.) [18]:

H ¼ h�0jHj�0i h�2�2
1�1
jHj�2�2

1�1
i

h�2�2
1�1
jHj�0i h�2�2

1�1
jHj�2�2

1�1
i

 !

¼ �1:8310 0:1813
0:1813 �0:2537

� �

of which the theoretical eigenvalue by diagonalization is
�1:851 570 929 351 19 a:u:

Calculation of molecular energy.—As shown in
Fig. 1(a), the calculation of the molecular energy in our ex-
periment is achieved by three steps: (1) adiabatic prepara-
tion of the system qubit to the ground state of the Hamil-
tonian H; (2) application of the time evolution of the
molecular Hamiltonian on the qubits to generate the phase
shift on the probe qubit; (3) measurement of the phase shift
on the probe qubit to extract the energy information.

In the first step, the system qubit of quantum simulator is
prepared by ASP to j�i, the ground state of the molecular
Hamiltonian H. According to the quantum adiabatic theo-
rem [19,20], the qubit starts from the ground state of a
simple Hamiltonian and the system Hamiltonian of the
qubit varies sufficiently slowly from the simple
Hamiltonian to the target Hamiltonian H. If there is an
energy gap between the ground state and the first excited
state, the qubit will stay on the instantaneous ground state
of the system Hamiltonian. Thus the qubit finally is pre-
pared on the ground state of H after the ASP.

In the second step, a unitary operator U ¼ e�iH� is
applied to the state j�i, generating a phase shift on the
probe qubit by a controlled operation. Here Uj�i ¼
e�iH�j�i ¼ ei2��j�i where E ¼ �2��=� is the energy
of H’s ground state. Note that the energy E is negative. So
we make the phase � to be positive and choose � properly
to make the phase � ranges from 0 to 1.

Finally, a four-bit inverse quantum Fourier transform
(QFT) is adopted as the relative phase measurement to
evaluate the phase shift in the Aspuru-Guzik’s proposal.
This apparatus needs four qubits as probe qubits to obtain
one precise bit with successful possibility of 15=16 [1].
While in the NMR platform we could use an NMR inter-
ferometer, named from the similar apparatus originally
used in optics, to measure the relative phase shift of the

quantum states by modulating the spectrum patterns
[21,22]. On our NMR interferometer, the phase shift could
be evaluated with an error bound of less than �5�, much
higher precision than the performance of the original four-
bit inverse QFTapparatus. Thus we utilize the interferome-
ter to measure the phase shift in our experiment.
Iterative scheme.—For useful practical application, it

should be possible to iterate the above process to achieve
arbitrary precision in the molecular energy. We made a
small modification to the iterative scheme in Aspuru-
Guzik’s algorithm to improve its reliability. As shown in
Fig. 1(a), for each iteration k we apply the controlled Uk

and measure the phase shift. We start the iterations from

U0 ¼ U and iterate the process by choosing Ukþ1 ¼
½e�i2��0

kUk�2n . Here, n is the number of bits exacted in
each iteration and �0

k ¼ maxf�k ��errbd; 0g where �k is

the phase shift measured in the kth iteration. Note that n is
limited by the precision of the phase measurement in each
iteration, i.e., 2�n � 2�errbd.
Experimental implementation.—We used the

13C-labeled chloroform dissolved in d6 acetone as a two-
qubit NMR quantum computer, where 13C nucleus was
used for the system qubit while 1Hwas for the probe qubit.
The molecular structure is shown in Fig. 1(b). The natural
Hamiltonian of this two-qubit system is given by

H NMR ¼ !p

2
�p

z þ!s

2
�s

z þ
�Jps
2

�p
z �s

z (1)

where !s=2� and !p=2� are the Larmor frequencies of

nucleus 13C and 1H, and Jps represents the J coupling

constant, typically, Jps ¼ 214:6 Hz. The experiments

were carried out at room temperature on a Bruker AV-
400 spectrometer. We now describe the experiment in
detail.
(A) Preparation of the initial state.—Starting from the

thermal equilibrium state, we first created a pseudopure
state (PPS) 	00 ¼ 1�


4 Iþ 
j""ih""j using the spatial aver-

age technique [23], with I representing the 4� 4 unity
operator and 
 � 10�5 the polarization. Then, we prepared
the system qubit on j�i by the ASP process and the probe
bit on the state jþi ¼ 1ffiffi

2
p ðj"i þ j#iÞ by a pseudo-Hadamard

gate Rp
y ð�=2Þ.

In the ASP process, we started from an initial
Hamiltonian H0 ¼ �x and prepared the system qubit on
its ground state j�i ¼ 1ffiffi

2
p ðj"i � j#iÞ by a conjugated

pseudo-Hadamard gate Rs
yð��=2Þ. Then we drove the

system Hamiltonian slowly from H0 to H by a linear
interpolation Had ¼ ð1� sÞH0 þ sH, where s ¼ t

T and

the time t grows from 0 to T. The state of system qubit
j�aspi after ASP approaches j�i as T increases [19]. We

numerically characterized the dependency of the fidelity of
ASP (defined as jh�j�aspij2) on the total evolution time T

in Fig. 2(a). In our experiment, we chose T ¼ 5:52 a:u:
[denoted by the triangle in the Fig. 2(a)] to ensure the
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success of ASP [24,25]. The unitary evolution for each

adiabatic step is Uad
m ¼ e�ið�=2Þð1�smÞ�xe�ismH��

e�ið�=2Þð1�smÞ�x þOð�3Þ, where the duration � ¼ T=ðMþ
1Þ and sm ¼ m

Mþ1T. In our experiment, Uad
m can be imple-

mented by a pulse sequence Rs�xð�1Þ � Rs�yð�2Þ � Rs
xð�3Þ

in Fig. 1(c) and the total evolution of ASP can be realized
by applying Uad

m in sequence. To clearly illustrate the
efficiency of ASP, we also tested the fidelities of ASP vs
evolution times T for nuclear distances r in the hydrogen
molecule.

(B) The controlled-Uk operation.—The controlled Uk

has the form ofUk ¼ j"ih"j � I þ j#ih#j �Uk. For the first
iteration (i.e., k ¼ 0),U0 ¼ e�iH�. Thus, theU0 operation
transforms the initial state jc ini ¼ 1ffiffi

2
p ðj"i þ j#iÞj�aspi into

jc fi ¼ 1ffiffi
2

p ðj"i þ ei2��j#iÞj�aspi where � ¼ �E�=2�

with the energy E. In an interferometer, the controlled
logic gate effectively introduces a relative phase shift
2�� between ‘‘two paths’’: the j0i and j1i states in the
initially prepared superposition of the probe qubit,
which can be read out directly in NMR [21,22]. The value

of �, in principle, can be arbitrarily chosen to make

� 2 ð0; 1Þ. For experimental convenience, we chose � ¼
½�= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Hð1; 2ÞÞ2 þ ðHð1; 1Þ �Hð2; 2ÞÞ2p �, and the pulse se-
quence to implement the controlled-Uk operator is shown
in Fig. 1(d). The different Uk in each iteration is realized
by adjusting the parameters �, �, and d.
Note that the direct implementation of the operator Uk

led to the same length of pulse sequences in our small-scale
demonstration. However, in a large-scale application, the
powers of U in Uk could not be simply decomposed
directly. In general, Uj should be realized by applying U
with j times [14] (also see Appendix in Ref. [15]); thus, the
experimental difficulty and operational error will be am-
plified with the iterations.
(C) Measurement.—The relative phase shift is obtained

if we measure the NMR signal of the probe qubit: h��
p i ¼

hc fj��
p jc fi ¼ cosð2��Þ þ i sinð2��Þ. As a result, the

quadrature detection in NMR serves as a phase detector;
i.e., the Fourier-transformed spectrum gives the relative
phase information. Here we take the initial state of c in

as the reference phase. Some of the experimental spectra
are shown in Fig. 3(b).
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FIG. 2 (color online). Fidelity of ASP as a function of evolu-
tion time T for different nucleus distances r in a single run. The
solid lines represent numerical simulations while the squares and
the triangle are data points. The triangle in (a) denotes the
configuration of ASP for our molecular simulation. The fidelity
approaches 1 as the evolution time grows according to the
adiabatic theorem. The adiabatic evolution is divided into 100
steps in numerical simulations and 8 steps in the experiments.
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FIG. 3 (color online). (a) Measured energy values for 15
iterations. The solid blue line denotes the spline fit of experi-
mental values (the circles) and the dash red line denotes the
theoretical expectation. The experimental value approaches
theoretical expectation exponentially. (b) Experimental 1H spec-
tra. The reference spectrum (A) from initial state jc ini and
(B)–(D) the spectra observed after iterations k ¼ 0, 1, and 14,
which provide the relative phase information. The phase mea-
sured in each iteration is used in its next iteration.

TABLE I. Experimental � values (�exp) measured in iterations, compared to the theoretical
expectation�th. The numbers in bold are the bits obtained from the experiment, where 3 bits are
extracted in each iteration. Through 15 iterations, we ultimately obtained 45 bits of �.

k Binary value

�exp 0 0.100100011101100101010000110010000011111110110

2 0.100100100111010111001011010011000101001001110

5 0.100100100111000000011010011101101111011101001

8 0.100100100111000000010100001110100010001111110

11 0.100100100111000000010100001101111001110000000

14 0.100100100111000000010100001101111001101010110

�th 0.100100100111000000010100001101111001101010110101
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After each iteration of the above procedure, we measure
the phase shift and prepare the operator for the next itera-
tion. After measuring the phases, we use a recursive
method to rebuild� as the experiment result. The recursive
method is formulated as �c

i�1 ¼ �c
i =�errbd þ�0

i�1 for the
result �exp after kth iteration, where �

c
i is the intermediate

value only for calculation. The recursive variable i iterates
from i ¼ k to 1 with �c

k ¼ �k where �k is the measured

phase in the kth iteration. And finally we get the result by
�exp ¼ �c

0.

The result of the iteration is shown in Fig. 3(a) and
Table I. The value �exp we obtained from experiment

approaches the theoretical value of �th rapidly as the
iterations proceeds. Finally the molecular energy extracted
all the 45 significant bits of � in 15 iterations is
�1:851 570 929 351 124.

Conclusions.—We performed a proof-of-principle dem-
onstration of quantum-simulation algorithm to calculate
the ground-state energy of the hydrogen molecule on an
NMR quantum computer up to a precision of 45 bits. In the
experiment, the initial ground state was prepared by adia-
batic passage. We confirmed that this adiabatic state prepa-
ration is efficient at different configurations of nuclear
distances in hydrogen molecule. We also verified that the
adopted phase estimation works well for obtaining the
energy level of the equilibrium configuration.

Quantum simulations were proposed as the first appli-
cations of quantum computers [3]. Compared to quantum
algorithms such as Shor’s factoring algorithm [2] requiring
thousands of qubits, quantum simulations on a few tens of
qubits (30–100 qubits) can be expected to exceed the
limitation of classical computing [14]. Here we made an
experimental step towards the goal of a rapid quantum
chemistry calculation by quantum computers. For larger
molecular sizes, two issues are relevant in the scalability of
this algorithm: (i) the efficient decomposition of the mo-
lecular evolution operator U and (ii) the complexity of the
adiabatic state preparation. The first issue has been ad-
dressed by Lanyon et al. [15]. On the second issue,
although it is difficult to achieve a decisive mathematical
analysis so far, some numerical simulations of the adia-
batic evolutions have been performed showing a polyno-
mial growth of the median runtimes with the system size,
e.g., the simulation up to 128 qubits [26]. On the other
hand, the polynomial time complexity has been analyti-
cally obtained when the adiabatic evolution is performed to
have the phase transitions of second or higher orders [27].
Therefore, this quantum-simulation algorithm is in princi-
ple feasible on medium molecular sizes where quantum
information is exploited to speed up quantum chemistry
calculations, when the necessary technical difficulties are
overcome in building a medium-scale quantum computer.
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