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We show that renormalization group (RG) theory applied to complex networks is useful to classify

network topologies into universality classes in the space of configurations. The RG flow readily identifies

a small-world–fractal transition by finding (i) a trivial stable fixed point of a complete graph, (ii) a

nontrivial point of a pure fractal topology that is stable or unstable according to the amount of long-range

links in the network, and (iii) another stable point of a fractal with shortcuts that exist exactly at the small-

world–fractal transition. As a collateral, the RG technique explains the coexistence of the seemingly

contradicting fractal and small-world phases and allows us to extract information on the distribution of

shortcuts in real-world networks, a problem of importance for information flow in the system.
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A generic property that is usually inherent in scale-free
networks is the small-world feature [2]. In small-world
networks, a small number of steps is required to reach a
given node starting from any other node. This is expressed
by the slow (logarithmic) increase of the diameter of the
network, �r, with the total number of nodes N0, �r� lnN0,
where r is the shortest distance between two nodes through
network links.

The small-world property has been shown to apply in
many empirical studies of diverse systems. However, re-
cent work [3–6] showed that many networks that have been
found to display the small-world property, such as the
WWW, are indeed fractal, indicating a power-law depen-

dence of the distances with the network size, �r� N1=dB
0 ,

where dB is the fractal dimension, up to a certain length-
scale before the global small-world behavior is observed.
Therefore, it is not clear how it is possible that fractal
scale-free networks coexist with the small-world property.
This shows the need for a framework that reconciles these
two seemingly contradictory aspects, fractality and the
small-world property.

In this Letter, we show that renormalization group (RG)
theory provides such a framework [3–6]. The main result
of our work is fourfold. (1) We introduce a method that
classifies networks into three universality classes accord-
ing to fixed points of the RG flow. We find a stable trivial
fixed point of a complete graph, a nontrivial fixed point of a
fractal structure that becomes stable or unstable according
to the amount of long-range links added to the network,
and a third stable fixed point that exists exactly at the
small-world–fractal transition consisting of a fractal with
shortcuts. (2) The RG technique allows for finding the
distribution of shortcuts overlaying a pure fractal topology,
a technique that we test in real-world networks like the
WWW and biological networks. (3) The RG identifies a
second point which is associated with information flow in
the system. (4) The RG analysis finds an explanation for
the seemingly contradiction between the small-world ef-

fect observed at a global scale in real-world networks and
the fractal behavior occurring at finite scales.
We apply the RG to complex networks using the box-

covering technique [3]. The network is covered with boxes
such that all nodes within a box are at a distance smaller
than b [top panel of Fig. 1(a)], where the distance is the
number of links along the shortest path between two nodes.
Once the network is tiled, we construct the renormalized
network by replacing each box with supernodes (or renor-
malized nodes). These supernodes are connected if there is
at least one link between two nodes in their corresponding
boxes. When this RG transformation, Rb, is applied to a
network G0, it leads to a new network Gb. If G0 is self-
similar [3–6], the RG leads to a structure that presents
similar properties asG0. More technically, ifG0 is a fractal
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FIG. 1 (color online). (a) Top panel: fractal network G0 with
box covering for b ¼ 2, and its renormalized network RbðG0Þ.
Bottom panel: shortcuts are added (curved links in lower left
panel); we obtain network G0. We apply the RG transformation
to G0 and obtain Gb. (b) Sketch of the number of boxes versus
the box diameter according to the probability, PðrÞ ¼ Ar��, to
add shortcuts between nodes at distance r. When the network is
in the stable phase, s � �=dB > 2, RG flows toward the pure
fractal fixed point G0, where the number of boxes is a power law
for all values of b (straight line). When s & 2, the number of
boxes displays a power law with an exponential cutoff at large
values, indicating that globally the network topology behaves as
a small world, but for small values of b the network still exhibits
fractality. For small values of �, the number of boxes decays
exponentially and the network displays the small-world property
at all scales.
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network, then RbðG0Þ ¼ G0 and G0 is a fixed point of the
RG flow.

Suppose we start with the fractal network G0 and add
shortcuts according to the distance r between nodes with
probability pðrÞ ¼ Ar��, where r > 1. The new network
with shortcuts, G0, is not self-similar anymore, or in other
words, RbðG0Þ � G0 [see Fig. 1(a)]. Here, we show that
depending on the exponent �, the application of the RG
process brings G0 either back to the original self-similar
structure G0 or transforms it into a complete graph (where
all nodes are connected to each other).G0 and the complete
graph are both fixed points in the space of networks. G0 is
an unstable fixed point of Rb since a small number of
shortcuts may lead it to a different network under Rb.
The complete graph is a stable or trivial fixed point because
any small perturbation always returns the network into the
complete graph under Rb.

We start by analyzing the RG flow. Let dB be the box (or
fractal) dimension of the self-similar network G0. Thus,
bdB ¼ N0=Nb is the average number of nodes in a box of
size b where Nb is the number of nodes in Gb and N0 the
number of nodes in G0. After a renormalization step is
applied to the network G0, the probability to find a shortcut
between two nodes at distance r in the renormalized net-
work Gb [black links in lower right panel of Fig. 1(a)] is

pbðrÞ ¼ 1� ½1� pðbrÞ�b2dB , and therefore,

pbðrÞ ¼ 1� ½1� AðbrÞ���b2dB : (1)

Let x � A�1ðbrÞ� and BðrÞ � A2dB=�r�2dB . In the limit
b ! 1, we find a fixed point of the RG flow defined at

p�ðrÞ � lim
b!1

pbðrÞ ¼ 1�
�
lim
x!1

�
1� 1

x

�
BðrÞx2dB=��

¼ 1� lim
x!1 exp½�BðrÞx2dB=��1�: (2)

Analysis of Eq. (2) reveals a critical value at s �
�=dB ¼ 2 separating two phases of the RG flow. If s >
2, we find p�ðrÞ ¼ 0. Therefore, the RG flow brings the
network toward the self-similar fixed point G0, implying
that the added shortcuts disappear under the renormaliza-
tion flow. If s < 2, we find p�ðrÞ ¼ 1 andG0 flows toward a
trivial fixed point consisting of a complete graph. If s ¼ 2,
G0 flows toward another nontrivial stable fixed point con-
sisting of the original fractal network G0 with shortcuts
following p�ðrÞ ¼ 1� expð�Ar�2dBÞ [Fig. 2(a)].

To better understand the features of the phases identified
by the RG flow, we analyze the behavior of the average
network degree under renormalization. This calculation
finds a second important point related to information
flow in the system. Let z0 and z0 be the average degree
(number of links per node) of G0 and G0, respectively.
Then, z0 � z0 ¼ 2MðLÞ

N0
, whereMðLÞ is the number of short-

cuts at distance L (the diameter of G0). Since G0 is fractal,
we find

MðLÞ�dB
Z L

1
Ar��rdB�1dr¼ A

1�s
ðLdBð1�sÞ �1Þ: (3)

Hence, we obtain

z0 � z0 ¼ 2A

1� s

�
LdBð1�sÞ � 1

N0

�
: (4)

After renormalizing the network G0 with length-scale b,
shortcuts connecting nodes inside a box will not appear in
the renormalized network, Gb. Therefore, the number of
remaining shortcuts in Gb is simply the number of short-
cuts that connect different boxes, i.e., MðLÞ �MðbÞ. If zb
is the average degree of Gb, then

zb � z0 ¼ 2½MðLÞ �MðbÞ�
Nb

¼ ðz0 � z0ÞfNðbÞ; (5)

where

fNðbÞ ¼
�
LdBð1�sÞ � bdBð1�sÞ

LdBð1�sÞ � 1

�
bdB: (6)

Let xb � N0=Nb ¼ bdB . In the limit L ! 1, we find the
scaling

fNðxbÞ � x�b; (7)

where the RG exponent � depends on the long-range
exponent � as

� ¼
�
1; if s � 1;
2� s; if s > 1:

(8)

Equation (8) [see Fig. 2(b)] identifies two transitions
separating different phases in the space of configurations,
as depicted in the phase diagram of Fig. 2. The first
transition at s ¼ 2 corresponds to the point when � ¼ 0,
and separates a stable phase with � < 0 for s > 2 from an
unstable phase with � > 0 for s < 2. Therefore, this tran-
sition corresponds to the complete graph-fractal transition
identified by the analysis of Eq. (2), and corresponds to the
point at which the network topology dramatically changes.
In the unstable phase, s < 2, the average degree increases
(� > 0) so that under infinite steps of the RG procedure,
the network becomes a complete graph with infinite aver-
age degree in the thermodynamic limit. On the other hand,
when s > 2, the network conserves the global fractal struc-
ture of G0. Under the RG flow, the difference between zb
and z0 goes to 0 and the shortcuts disappear, returning G0
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FIG. 2 (color online). (a) RG flow diagram. (b) Phase diagram
of the three phases found via RG at s < 1, 1< s < 2, and s > 2.
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back to its original fractal structure. In this state, the
diameter of the network grows as a power law with the
number of nodes, implying a large-world fractal structure.
Instead, if long-range connections are added with s < 2,
the small-world property is achieved, where the diameter
of the network grows logarithmically with the number of
nodes. Therefore, the s ¼ 2 (or � ¼ 2dB) transition is a
small-world–fractal transition. This calculation general-
izes the small/large-world transition, previously found in
Refs. [8] for lattices to the case of complex networks.

As a test of the RG predictions, we use a model of fractal
networks, as described in Ref. [5]. Using the fractal model,
shortcuts with an exponent � can be added to the network
and the prediction of Eq. (8) can be tested in a controlled
manner. The fractal model network is built as follows [5]:
At generation n ¼ 0, we start with a star network of 5
nodes, i.e., a node in the center and four nodes connected to
the center node. Then, generation nþ 1 is obtained recur-
sively by attaching m new nodes to the endpoints of each
link l of generation n. In addition, we remove links l of
generation n and add x new links connecting pairs of
new nodes attached to the endpoints of l [see top panel
of Fig. 1(a) for an example at with n ¼ 2, m ¼ 2, and x ¼
1]. The algorithm leads to a pure fractal scale-free network
with degree distribution exponent � ¼ 1þ lnð2mþ
xÞ= ln2 and fractal dimension dB ¼ lnð2mþ xÞ= ln3.

Figure 3(a) shows the results of the RG flow applied to
the fractal model network with n ¼ 6, m ¼ 2, x ¼ 1 with
dB ¼ 1:46 for various long-range exponents �. Starting
from a pure fractal topology, we pick a node and add a
random connection to another node at distance r according
to the probability pðrÞ ¼ Ar�� when r > 1 (in our results
we repeat this process for 10% of the nodes in the net-
work.) The renormalization is performed numerically us-
ing the box-covering algorithm called MEMB in Ref. [11].
Notice that the MEMB algorithm leads to networks that are
smaller than the original, and therefore few points are
obtained in the plot of zb � z0 vs xb. To overcome this
problem and obtain better resolution, we take advantage of
the self-similar aspect of the network and perform a ‘‘par-
tial renormalization,’’ in which parts of the network are
subsequently renormalized into supernodes. We follow the
behavior of zb in the RG flow for a given �. For s < 1, the
average degree follows a power law with exponent � ¼ 1
as in Eq. (8). When s > 1, the exponent follows the theo-
retical prediction Eq. (8), � ¼ 2� s. Figure 3(b) shows a
very close comparison with theory indicating the transition
between the stable region and the unstable region and the
optimal navigability point. In Fig. 3(c), we show the de-
pendence of zb � z0 for different values of N0. When b is
large, finite size effects become evident and the average
degree of the renormalized network deviates from the
expected power-law of Eq. (7).

An important point readily emerges form the analysis of
Eq. (8) when s ¼ 1 (� ¼ dB) within the unstable phase as
shown in Fig. 2(a). Notice that s ¼ 1 coincides with the
optimal point of decentralized navigability of Kleinberg

[9] for lattices with fractal dimension dB [10], and there-
fore these results could be seen as a plausible extension of
the results in Refs. [9,10] for scale-free complex networks.
We test this by measuring numerically the average time,
Tð�Þ, for a message to be delivered from a source node to a
target node along the links of the network. It is important to
notice that since scale-free networks are not embedded in
any euclidean space, one cannot directly apply the decen-
tralized algorithm as introduced by Kleinberg. In the case
of scale-free networks, we allow for the message holder to
have information on the distance between any node and the
target in the fractal background G0, plus his own shortcuts,
but not on (their) the other long-range shortcuts that exists
in G0. In Fig. 3(c), we show simulation results for Tð�Þ
versus � for the fractal model with m ¼ 2, x ¼ 1 and for
different values of system size N0. We find that the value
�cðN0Þ corresponding to the minimum delivery time for a
given N0 slowly converges to the critical value �cðN0Þ !
�c ¼ dB ¼ 1:46 as N0 ! 1, implying a navigability tran-
sition at s ¼ 1 as predicted by the RG analysis.
An advantage of the RG approach is that it allows for a

measurement of the type of shortcuts present in real-world
networks. Previously in this Letter, we started with a pure
fractal structure G0 to which shortcuts were added, gen-
erating network G0, and analyze the stability of G0 under
the RG procedure. We now switch to the study of real-
world networks where we tackle the inverse problem. The
real-world networks we examine are known to have an
underlying fractal structure since the measurement of Nb

versus b leads to a power-law relation [3] [see Fig. 1(b)].
However, these real-world networks already present short-
cuts overlaying the fractal structure, and therefore rather
than a pure power-law, the scaling shows a cutoff at large b,
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FIG. 3 (color online). Renormalization applied to the fractal
model. (a) Average degree of the renormalized network versus
xb for the fractal model with n ¼ 6, m ¼ 2, x ¼ 1. (b) Values of
� obtained from Fig. 3(a) (green data points) and the prediction
of the RG from Eq. (7) (solid line). (c) Finite size effects in zb �
z0. (d) Navigation time Tð�Þ for the fractal network model.
Circles show the minimum value.
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like G0 in Fig. 1(b). Therefore, these networks are com-
posed by a fractal underlying structure, analogous to G0,
with some shortcuts generating the network G0. The ques-
tion we want to answer here is, what is the � exponent of
the shortcuts overlaying the fractal network? Since one
cannot obtain the value of � directly from the data, we
infer its value by treating the real-world network as the
network G0 and measuring directly the value of � using the
RG flow.

In Fig. 4, we show the results of the RG flow to a sample
of the WWW [2], a protein homology network [12], the
metabolic network of E. coli [13], a yeast protein interac-
tion network [14], and the coacting network of IMDB (we
use only the "adult" part of IMDB, not the full database as
in [3]) that have been found to exhibit fractal topologies
[3]. Table I shows a summary of the exponents for real-
world networks. For instance, we find that while the
WWW exhibits fractal scaling in Nb [3], it also presents
enough shortcuts that its structure belongs to the unstable
phase. Thus, the WWW is fractal up to a given length
scale, and then it crosses over to small-world behavior at
large scales [Nb presents an exponential cutoff at large b,
Fig. 1(b)]. The RG determines the crossover scale such that
under enough RG steps, the WWW finally becomes a
complete graph. Thus, the renormalization allows us to
conceptualize the apparent discordance between small-
world and fractal properties. Also, due to the its proximity
to the � ¼ dB point, the WWW is sufficiently randomized
to give a topology close to optimal information flow. On
the contrary, the biological networks PHN and PIN, and the
social network of coacting belong to the stable phase
indicating that the shortcuts are minimal (the metabolic
network is unstable but close to the transition point). The
biological networks display a modular deterministic struc-

ture shaped by evolution which exhibit pure fractal char-
acter that may be seen as a means of protection,
preservation, and conservation.
In summary, the RG approach finds the type of shortcuts

in a given network and determines the location of a net-
work in the space of configurations. When the exponent of
the shortcuts is �> 2dB, the network structure belongs to
the stable phase, where RG exhibits a fixed point consisting
of a pure fractal network in the space of configurations. On
the other hand, when �< 2dB, the network is in the
unstable phase where shortcuts become dominant, chang-
ing dramatically the global distance between nodes, and
leading to a small-world network at large scales.
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TABLE I. Exponents obtained for the real-world networks.

Network dB � (Fig. 4) s from Eq. (8) phase

WWW 4.1 0.68 1.32 unstable

Metabolic 3.5 0.22 1.78 unstable

PIN 2.2 �0:07 2.07 stable

IMDB 3.5 �0:71 2.71 stable

PHN 2.5 �0:83 2.83 stable
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