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In this Letter, we explore the possible effects of polymer additives on heat transport in turbulent thermal

convective flows. Using both direct numerical simulations and shell-model calculations, we show that

polymer additives can significantly enhance the heat transport in homogeneous turbulent thermal

convection, which mimics the bulk of turbulent Rayleigh-Bénard convection. We also discuss the

implication of our results for turbulent Rayleigh-Bénard convection, in which there are boundary layers

in addition to the central bulk.
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That adding polymers to turbulent wall-bounded flows
can reduce friction drag significantly [1] has long been
known, but the effect of polymer additives on heat trans-
port in turbulent thermal convective flows is much less
studied. Experimentally, turbulent thermal convection is
often investigated in a Rayleigh-Bénard convection cell
heated from below and cooled on top. In this Letter, we
report our study for homogeneous turbulent thermal con-
vection, which mimics the bulk of turbulent Rayleigh-
Bénard convection. Our work shows that polymer additives
can significantly enhance the heat transport. We first dem-
onstrate this effect using direct numerical simulations
(DNS). Then we study the phenomenon in a shell model
of the problem. The usage of this simplified dynamical
model allows us to perform a systematic investigation in
the parameter space with minimal computational effort.
Our predictions, based on the understanding gained by
using the shell model, are then checked against and con-
firmed by the DNS.

Homogeneous turbulent convection has been proposed
[2,3] as a three-dimensional convective flow in a box with
periodic boundary conditions, driven by a constant tem-
perature gradient along the vertical direction. In the pres-
ence of polymers, there is an additional stress tensor that
depends on the conformation of the polymers. In
Boussinesq approximation [4] and within the finitely ex-
tensible nonlinear elastic-Peterlin (FENE-P) model for
polymers, we have

Du

Dt
¼ �rpþ �sr2uþ r � T þ �g�ẑ (1)

D�

Dt
¼ �r2�þ �uz: (2)

Here u and T are the velocity and temperature fields,
D=Dt � @t þ u � r is the material derivative, p is the
pressure, T0 is the mean temperature, � ¼ T � ðT0 � �zÞ
is the temperature deviation from a linear profile of gra-
dient��, ẑ is a unit vector in the vertical direction, and �,

�s, and � are, respectively, the volume expansion coeffi-
cient, kinematic viscosity and thermal diffusivity of the
neat fluid. T ðr; tÞ ¼ ð�p=�Þ½Pðr; tÞRðr; tÞ=�2

0 � 1� is the

additional stress tensor due to the polymers, where the
polymer conformation tensor R is the ensemble average
of the product of the end-to-end distance of the polymer
chains. The equation of motion for R is:

DR��

Dt
¼ @u�

@r�
R�� þ R��

@u�
@r�

� 1

�
½Pðr; tÞR�� � �2

0	���
(3)

where Pðr; tÞ ¼ ð�2
m � �2

0Þ=ð�2
m � R��Þ is the Peterlin

function. Here �2
m and �2

0 are the maximum and the equi-

librium values of the trace R��, �p=�s � c, and � and c are

the relaxation time and volume fraction of the polymers.
Equations (1)–(3) are numerically integrated using a stan-
dard pseudospectral method in a domain ð2
Þ3 with peri-
odic boundary conditions for u and �, using a spectral code
with 1443 collocation points [5]. Heat transport is mea-
sured by the Nusselt number (Nu), which is the ratio of the
actual heat transport to that when there was only conduc-
tion:
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FIG. 1 (color). Nu=Nu0 (circles) and ½Trms=Trms0�3=2 (tri-
angles) (see text for definitions) as a function of De obtained
in the DNS. The largest error bars are shown.
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Nu � huzðT � T0Þ � �@T=@ziA
��

¼ huz�iV
��

þ 1; (4)

where h� � �iA denotes an average over (any) horizontal
plane of the convection cell and time, and h� � �iV denotes
an average over the whole volume and time. We study how
Nu depends on the Deborah number (De), defined byDe ¼
�Urms0=L� �

ffiffiffiffiffiffiffiffiffiffi
g��

p
, where Urms0 is the rms velocity and

L is the energy containing (large) scale in the absence of
polymers. As shown in Fig. 1, Nu exceeds Nu0, the
Newtonian value in the absence of polymers at De ¼ 0,
for every value of De studied. In particular, there is a
twofold increase in Nu for De � 0:5. In the case without
polymers, it has been known that [6] periodic boundary
conditions in the vertical direction introduce exact, expo-
nentially growing (unstable) runaway solutions. In the
presence of polymers, it is relatively simple to show that
these solutions cannot exist when polymers are stretched.
As polymers are stretched when they are acting on the flow,
our observed increase of Nu is not due to the effect of any
runaway solutions.

To develop a phenomenological understanding of the
DNS results, we study the same phenomenon in a shell
model, which is a class of simplified dynamical models. By
interpreting R�� as the dyadic product B�B� of a vector

field Bðr; tÞ, a shell model has been developed for homo-
geneous and isotropic turbulence with polymers [7]. We
extend it to include also the temperature field and obtain
the shell model for homogeneous turbulent thermal con-
vection with polymers:

_u n ¼ i

3

�
�nðu; uÞ �

�p

�
�nðB; BÞ

�
� �sk

2
nun þ �g�n

(5)

_� n ¼ iðknþ1�nþ1unþ1 þ kn�n�1u
�
nÞ � �k2n�n þ �un (6)

_B n ¼ i

3
½�nðu; BÞ ��nðB; uÞ� � 1

�
Bn � �Bk

2
nBn (7)

where an overdot denotes a time derivative. The nonlinear
interaction terms take the explicit form

�nðu;BÞ ¼ kn½ð1�bÞunþ2B
�
nþ1þð2þbÞu�nþ1Bnþ2�

þkn�1½ð2bþ1Þu�n�1Bnþ1�ð1�bÞunþ1B
�
n�1�

þkn�2½ð2þbÞun�1Bn�2þð2bþ1Þun�2Bn�1�
(8)

where b is a parameter. Here un, Bn, and �n are complex
variables representing the Fourier amplitudes of uðknÞ,
BðknÞ, and �ðknÞ with discrete wave vectors kn ¼ 2nk0,
n ¼ 0; 1; 2; . . . , and � represents the complex conjugate.
We take �B � 0, fix b ¼ �0:2 [7], �p ¼ 1, k0 ¼ 1, and

�s ¼ � such that the Prandtl number (Pr) is one. Also,
Nu ¼ ReðPnhun��niÞ=ð��Þ þ 1 in analogy to Eq. (4), with
h� � �i denoting an average over time.

From Eqs. (5) and (6), we obtain the evolution equations
for the kinetic and thermal energies Ek ¼

P
njunj2=2 and

ET ¼ P
nj�nj2=2:
_E k ¼ �gRe

�X
n

un�
�
n

�
� �

X
n

k2njunj2 � �p (9)

_E T ¼ �Re

�X
n

un�
�
n

�
� �

X
n

k2nj�nj2 (10)

where �p ¼ Re½� i
3 ð�p=�ÞPnu

�
n�nðB; BÞ� is the rate of

energy dissipation due to the polymers and �p ¼
ð�p=�Þ�njBnj2 from Eq. (7). Thus in the statistically sta-

tionary state,

��2k40ðNu� 1ÞRa ¼ �u þ h�pi � �tot (11)

��2Nu ¼ �T (12)

where �u ¼ �
P

nk
2
nhjunj2i and �T ¼ �

P
nk

2
nhj�nj2i þ ��2

are the mean energy and thermal dissipation rates and
Ra ¼ �g�=ðk40��Þ in the shell model.

To proceed, we estimate Nu, �tot (or �u in the absence of
polymers) and �T in terms of the rms velocity and tem-

perature fluctuations, defined as Urms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2hEKi

p
and

Trms ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2hETi

p
. The first estimate is:

Re
X
n

hun��ni ¼ aUrmsTrms with a � 1: (13)

For the problem in the absence of polymers, we follow
[8] and estimate �u and �T as

�u ¼ U3
rms0=L; �T ¼ Urms0T

2
rms0=L (14)

where Urms0 and Trms0 are the rms values in the absence of
polymers, and L� 1=k0 is the (large) scale of energy and
temperature fluctuations. Substituting Eqs. (13) and (14)
into Eqs. (11) and (12), and using the definition of Nu, we
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FIG. 2 (color). Nu=Nu0 as a function of � in the shell model
with �g� ¼ 1, �s ¼ � ¼ 10�6. The red dashed curve is the �3=2

fit for small � and the blue solid curve is the 1=� fit for large �.
The error bar shown is almost the size of the symbols. Inset:
Nu=Nu0 as a function of 1=� to highlight the 1=� behavior at
large �.
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obtain

Nu � ffiffiffiffiffiffiffiffiffiffiffiffi
Pr Ra

p
(15)

U2
rms0 � �gLTrms0: (16)

Equation (15) is the well-known ‘‘ultimate-regime’’ scal-
ing predicted by Kraichnan [9] and obtained in both DNS
[8] and shell-model calculations [10] of homogeneous
turbulent thermal convection while Eq. (16) is the basic
physics underlying this relation.

We now turn to the problem with polymers. Figure 2
shows Nu as a function of �. The Deborah number, com-
puted as De � �Urms0k0 in the shell model, goes from 0.1
at � ¼ 10�3 to 10 at � ¼ 0:1. We clearly see that for not
too large�, there is a rather large increase in Nu, in agree-
ment with the DNS results (see Fig. 1). For small �, as the
polymers cannot be stretched too much, we expect �u to be
much larger than h�pi. The key observation is that we need
to generalize (14) by introducing two different length
scales l0 and lT :

�tot ¼ U3
rms

l0
; �T ¼ UrmsT

2
rms

lT
: (17)

Next, we recall that according to our knowledge of the
effect of polymers in turbulent flows, the only relevant
parameter for the polymers is their relaxation time �.
Thus in general, when polymers are acting, both l0 and
lT may depend on �. However, there is no a priori reason
for l0 to remain the same as lT as � increases. In fact, as
shown in Fig. 3, while lT is definitely a function of �, l0 is
almost independent of � for small �. Using Eqs. (11), (12),
and (17), we obtain U2

rms � g��l0lT and Trms � �lT . Thus

l0 being independent of � for small � implies that hEKi �ffiffiffiffiffiffiffiffiffiffihETi
p

, as long as � is small enough. This further implies

that Nu=Nu0 � ðTrms=Trms0Þ3=2 for small �. Our phenome-
nological considerations are not able to predict any func-
tional form of the dependence of lT on �. However, we may
guess that the effect of the polymers is to ‘‘smooth’’ out
turbulent fluctuations as observed in homogeneous and

isotropic turbulence, and tentatively assume that lT should
increase with � for not too large�, which is exactly what
Fig. 3 is telling us. For small enough �, we can assume the
increase of lT with � to be linear in �: lT � �, which leads

to Nu=Nu0 � �3=2. This prediction is consistent with our
finding in the shell model as shown in Fig. 2.
When � becomes very large, most of the energy produc-

tion should feed polymer stretching. Thus for large �,

hEKi �
ffiffiffiffiffiffiffiffiffiffihETi

p
no longer holds. We also expect Nu to

decrease. If we assume that there exists no singularity in
� such that hEKi, hETi as well as Nu remain as analytic
functions of 1=�, then for large �:

hEKi � 1

�
; hETi � 1

�
; Nu�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hEKihETi

q
� 1

�
:

(18)

This argument explains the behavior of Nu for large � as
observed in Fig. 2, and also implies hEKi � hETi for large
�. Both hEKi �

ffiffiffiffiffiffiffiffiffiffihETi
p

for small � and hEKi � hETi for
large �, are observed and confirmed in the shell model
but are not shown here due to the lack of space.
Let us summarize our phenomenological picture based

on the shell model: (1) For small �, only lT , but not l0,
depends on �. lT should increase with � and Nu increases as

l3=2T . (2) As long as � is not too large, hEKi �
ffiffiffiffiffiffiffiffiffiffihETi

p
and

Nu� T3=2
rms . (3) For very large �, Nu� 1=� and hEKi �

hETi.
We now go back to check whether our phenomenologi-

cal picture is supported by the DNS results. In Fig. 3, we
compare the behavior of lT and l0 computed from DNS to
that in the shell model. Indeed l0 is almost independent of �
while lT increases with � for small �, in good agreement
with our finding in the shell model. In Fig. 1, we show,

together with Nu=Nu0, the behavior of ðTrms=Trms0Þ3=2. It
can be seen that our prediction of Nu� T3=2

rms [see point 2
above] is well supported by the DNS results. Hence both
points 1 and 2 are well supported by the DNS results.
Moreover, our result of lT � � for small � suggests that
the typical scale of the temperature fluctuations would
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FIG. 3 (color). The length scales l0 (squares) and lT (circles),
normalized by their corresponding Newtonian values, obtained
in DNS (left panel) and in the shell model (right panel). The
errors are about 10% in DNS and 3% in the shell model.

FIG. 4 (color). Two-dimensional cross section of the tempera-
ture fluctuation obtained in DNS for Newtonian flow without
polymers and with polymers calculated at the largest De.
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increase in the presence of polymers. This is in qualitative
agreement with the results observed in DNS (see Fig. 4).

The results shown in Fig. 2 have been obtained by
keeping Ra constant while varying �. We have also inves-
tigated the Nu(Ra) relationship for fixed �. There are two
possible ways to vary Ra, namely, (i) by varying �s ¼ �
while keeping � fixed and (ii) by varying � while keeping
�s ¼ � fixed. The results are shown in Fig. 5. In case (i),

Nu� Ra1=2 as expected. In case (ii), Nu approaches a
constant value for large Ra. This is not surprising since
our prediction of Nu� 1=� for large �, at constant Ra,
should be properly written in the dimensionless form as
Nu� 1=De where De ¼ �

ffiffiffiffiffiffiffiffiffiffi
�g�

p
. Thus,

Nu � Ra1=2

De
¼

�
�g�

k40�s�

�
1=2 1

�
ffiffiffiffiffiffiffiffiffiffi
�g�

p ¼ 1

�k20
ffiffiffiffiffiffiffiffi
�s�

p (19)

which predicts Nu� const for case (ii) as observed in
Fig. 5. This particular result is a different and nontrivial
way to test our phenomenological picture. We think that,
although we are not able to provide a systematic theory for
lT as a function of �, the results shown in Figs. 2 and 3
strongly support the phenomenological picture previously
described.

Finally, we discuss the implications of our results for
turbulent Rayleigh-Bénard convection and thus the possi-
bility to test our findings in experiments. In turbulent
Rayleigh-Bénard convection, there are boundary layers in
addition to the central bulk. For Pr�1 and Ra�
1011–1013, the amount of energy dissipation is approxi-
mately 50% due to the bulk and almost 50% to the bound-
ary layers. At such moderate Ra, boundary layers are
expected to be laminar and their properties can be inves-
tigated using Blasius-type balancing of the constitutive
equations [4]. We argue that the addition of polymers in
nearly stable boundary layers may produce an increase of
friction drag. Increasing drag means increasing momentum
flux towards the boundary and consequently, we expect a

decrease of Nu. This has indeed been observed in DNS [11]
at relatively small Ra. We may think of the difference
between Nu, the value with polymers, and Nu0, the value
without polymers, 	Nu � Nu� Nu0, as being split into
two pieces according to the partition of the energy dissi-
pation into its bulk and boundary layer contributions; i.e.,
we can write 	Nu ¼ 	NuBL þ 	Nubulk, where 	NuBL is
the amount of change in Nu corresponding to the energy
dissipation in the boundary layers while 	Nubulk is the
amount of change in Nu corresponding to the energy
dissipation in the bulk. Our present work shows that
	Nubulk > 0 while our above argument for Blasius bound-
ary layers indicates that 	NuBL < 0. Moreover, it is likely
that when Ra is not too large, j	NuBLj � 	Nubulk such that
polymers do not affect the heat transport significantly. On
the other hand, by either (i) increasing Ra, (ii) artificially
destroying the contribution to energy dissipation from the
boundary layers, or (iii) using a long vertical channel that
focusses on the bulk [12], 	Nubulk should dominate and we
should observe an overall increase in Nu in the presence of
polymers.
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FIG. 5 (color). Nu as a function of Ra in the shell model with
Ra increased in two different ways: (i) by decreasing �s ¼ �
while keeping � fixed for the case with (circles) and without
(squares) polymers, and (ii) by keeping �s ¼ � fixed and in-
creasing � for the case with polymers (triangles).
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