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Few-Photon Transport in Low-Dimensional Systems: Interaction-Induced Radiation Trapping
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We present a detailed analysis of the dynamics of photon transport in waveguiding systems in the
presence of a two-level system. In these systems, quantum interference effects generate a strong effective
optical nonlinearity on the few-photon level. We clarify the relevant physical mechanisms through an

appropriate quantum many-body approach. Based on this, we demonstrate that a single-particle photon-
atom bound state with an energy outside the band can be excited via multiparticle scattering processes. We
further show that these trapping effects are robust and, therefore, will be useful for the control of photon
entanglement in solid-state based quantum-optical systems.
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Over the past years, the conception and development of
solid-state based quantum-optical functional elements
have received steadily increasing interest [1-3]. As com-
pared to other approaches, solid-state-based systems offer
an obvious scalability and handling advantage of the re-
sulting devices as well as the utilization of modified light-
matter interactions through judicious designs of the corre-
sponding waveguides’ dispersion relations and/or mode
profiles.

However, since high-quality samples such as coupled-
optical-resonator-waveguide arrays (CROWs) [4,5] have
become available only recently, there is limited theoretical
work regarding the potential of utilizing modified light-
matter interaction in (effectively) low-dimensional
quantum-optical systems. The basic underlying problem,
i.e., that of a system with discrete levels that is coupled to a
continuum of states has attracted attention for a long time
[6]. For single photons, quantum interference effects in
one-dimensional waveguides with an embedded quantum
impurity allow the realization of effective energy-
dependent mirrors [7-9]. For two or more photons, this
system induces an effective photon-photon interaction and
even bound photon-photon states that may be exploited for
efficient control of photon-entanglement [10-12]. Except
for our work on the one-photon case [9], all of the above
calculations have been carried out in the stationary regime.
In particular, the more challenging few-photon case has
been addressed with sophisticated Bethe-ansatz [10,11]
and Lehmann-Symanzik-Zimmermann reduction tech-
niques [12] that allow one to determine the corresponding
scattering matrices for such systems. However, these field-
theoretical approaches employ linearized dispersion rela-
tions without band edges.
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In the present Letter, we apply our computational frame-
work of time-domain simulations using Krylov-subspace-
based operator-exponential methods [9,13] to the case of
few-photon transport through a quantum impurity in a one-
dimensional waveguiding system similar to wave packet
dynamics in electronic systems [13,14]. This allows us to
analyze the scattering of two or more photons at the
quantum impurity in a very general way. In particular,
for a cosine-type dispersion relation, we are able to confirm
the existence of two bound photon-atom states [12].
Furthermore, we show how these states can be excited
and controlled through the photon nonlinearity that is
induced by the quantum impurity. This elucidates the
mechanism through which the quantum impurity can be
utilized for controlling photon entanglement. In the field-
theoretical approaches discussed above [10-12], the
photon-atom bound states are (due to the absence of band
edges) energetically shifted to infinity and are thus re-
moved from the physically accessible Hilbert space.

Starting from the well-known Dicke-Hamiltonian [15],
we can derive a tight-binding Hamiltonian that describes
photon propagation in an effectively one-dimensional
waveguide with cosine-type dispersion relation (such as
the CROWSs of Refs. [4,5]) that is coupled to a quantum
impurity as [9]

N-1
H=-7Y (ala,, vch:[Jrlax)-i-%o'Z
x=1
+ Via, o4 + aj[ocr_). (1)

Here, a! and a, denote, respectively, bosonic (photon)
creation and annihilation operators at lattice site x and J
denotes the corresponding hopping element. The quantum
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impurity is modeled as a two-level system (TLS) with
transition frequency w, = {}/h that is located at lattice
site xq and couples with a coupling element V to the modes
of the photonic band. When measuring energies from the
center of the band, the corresponding dispersion relation is
hw; = —2J cos(ka), where a denotes the lattice constant
and k stands for a wave number that lies within the first
Brillouin zone. Finally, the TLS is described through the
Pauli operators o, and .. = o, * ioy.

While being physically intuitive, the above Hamiltonian
(1) does not allow for the most transparent discussion of
the underlying physics. Instead, we find it most useful to
reformulate the problem in terms of the Hamiltonian

N—1
H=-J Z(a;[axﬂ + aIHaX) + Qbth

x=1

+ V(a, bt + al ) + Ubtb(bTH — 1),  (2)

where we have replaced the TLS by an additional bosonic
lattice site. More precisely, we have replaced the Pauli
operators of the TLS by appropriate combinations of bo-
sonic creation and annihilation operators, b' and b. The
ground and excited states of the TLS correspond, respec-
tively, to none and a single boson on this additional site
(TLS site). Unphysical multiple occupancies of the TLS
site have been addressed through the addition of the last
term on the right-hand side (rhs) of (2). This term ensures
that once the TLS site is occupied, i.e., the TLS is in its
excited state, adding a further boson to the TLS site re-
quires the energy U > 0. Thus, Hamiltonians (1) and (2)
are equivalent in the limit U — oo and this is the only case
we consider in this work. The U term induces inelastic
scattering that allows us to discuss the physically relevant
processes. For actual numerical calculations, we use
Hamiltonian (1).

With this reformulation several issues become apparent.
Quantum interference processes associated with the cou-
pling between TLS and the waveguide modes induce an
effective interaction between photons as described by the
nonlinear term Ubtb(bth — 1). While this effective few-
photon optical nonlinearity is spatially localized to the
immediate vicinity of the TLS site, this system neverthe-
less represents a true quantum-mechanical many-particle
problem. For instance, Hamiltonian (2) looks very similar
to a bosonic version of the celebrated single-impurity
Anderson model [16] that describes magnetic impurities
in metals. Therefore, it is suggestive to apply methods that
have been developed for correlated quantum systems to the
Hamiltonians (1) and (2) [9-12]. From Hamiltonian (2), it
becomes apparent that the TLS will induce correlations
between two or more photons. This raises the fascinating
question to what extent the TLS can be utilized to engineer
this entanglement and what role the photon-atom bound
states play in this (note that photon-atom bound states have
been discussed in a different context before [17]).

To address this question, we have to go beyond sta-
tionary calculations that determine the scattering matrices
of photons in plane wave states for linearized dispersion
relations where the photon-atom bound states are physi-
cally inaccessible [10-12]. To do so, we employ our com-
putational framework which we have described in detail
elsewhere [9]. This framework allows us to analyze both
the dynamics of multiphoton wave packets that interact
with the TLS and the dynamics of the TLS itself.
Furthermore, it takes into account all aspects introduced
by the finite-bandwidth dispersion relation. First, we would
like to note that on energetic grounds a single photon
cannot excite the photon-atom bound states described
above and, therefore, these states are of no relevance in
single-photon scattering calculations from a TLS [8,9]. In
other words, the TLS (partially) absorbs an incoming
single photon and a decomposition of the system’s initial
state into the (polaritonic) single-particle eigenstates of the
Hamiltonian (1) does not involve the bound photon-atom
states. Thus, the excited TLS will eventually decay into its
ground state. However, our reformulated Hamiltonian (2)
suggests that, by virtue of the nonlinear interaction term,
the bound states can, in principle, be energetically reached
via multiphoton processes. In Fig. 1, we demonstrate that
this is indeed possible: A two-photon wave packet interacts
with the TLS and a sizable fraction of the photon popula-
tion becomes trapped at the TLS site. In other words, once
the TLS is appreciably excited by one of the incoming
photons, the remaining photon sees a modified (saturated)
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FIG. 1 (color online). Time evolution (in units of #/J) of
transmission (T'), reflection (R), and impurity occupation {(n;) =
(bThy = (o, + 1/2) for a two-photon wave packet that scatters
at a TLS. The TLS has a transition energy 0 = /2J and couples
with coupling strength V = J to the central lattice site x, =
100a of a tight-binding lattice with total extent L = 199a and
hopping element J. The photons are described via boson-
symmetric wave packets that are constructed from single-
particle Gaussian wave functions of width s = 6a with wave
number k = 377/4a and initial center x. = 70a (see text and
Ref. [9] for further details). All calculations are stopped at times
not exceeding the transit time, i.e., the time the wave packet
needs to pass through the waveguide, thus avoiding artificial
reflections from the system’s boundaries.
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TLS and is thus (partially) scattered into the hitherto un-
reachable bound photon-atom states via multiparticle scat-
tering processes. After the scattering is complete, the
bound photon-atom states are again decoupled from the
continuum (such as is the case for the scattering of a single
photon discussed above) and, thus, cannot decay. These
bound states are of a polaritonic nature; i.e., they are
multimoded dressed eigenstates of (1) and (2) with com-
plex wave numbers solely induced by the existence of the
waveguide’s finite bandwidth. This implies that a fraction
of the radiation remains trapped at the TLS site in form of a
partial occupation of the TLS.

In order to verify the role of the multiparticle processes,
we display in Fig. 2 the time evolution of the TLS’ excited-
state occupation for the scattering of multiphoton wave
packets with different particle numbers. The increase in the
trapped photon population with the number of photons
implies a corresponding increase in the rate at which
radiation is scattered into the bound states. The strength
of this interaction further depends on the detuning of the
TLS relative to the photon frequency as well as on the
strength of the coupling matrix element V between TLS
and the waveguide modes. In Fig. 3, we depict the corre-
sponding dependence of the trapped photon population at
the TLS for a fixed photon wave number k = 37 /4a.
Consistent with our above interpretation, trapping is most
pronounced for zero detuning 6 = () — hw, (recall that
howi—37/40 = V/2J). Furthermore, proximity of the TLS
resonance frequency to the band edge (or cutoff frequency
of the waveguide) is clearly advantageous for realizing
efficient trapping: for frequencies near a band edge the
multiparticle scattering mechanism has to provide less
additional energy for exciting the energetically closest
bound state. Less intuitive is the fact that there exists an
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FIG. 2 (color online). Time evolution (in units of #/J) of the
impurity occupation {n,) for initial multiphoton states with
different photon numbers C that are constructed analogous to
the two-photon states in Fig. 1. The corresponding system
parameters are L = 99a, xy = 50a, Q = +/2J, and V = J. The
photon parameters are x, = 25a, s = 5a, and k = 377/4a. The
results for photon numbers C = 3 and C = 4 have been obtained

with a time-dependent density matrix renormalization group
(DMRG) technique as described in Ref. [13].

optimal coupling strength V,, ~J between TLS and
waveguide modes for which maximal trapping occurs.
We have confirmed these findings for a number of different
dispersion relations. For instance, we have extended
Hamiltonian (2) to include a next-nearest-neighbor hop-
ping term J@ # 0 that allows us to significantly modify
the cos-type dispersion relation of the tight-binding model
(not shown). In addition, we have found analogous behav-
ior for strictly linear dispersion relations with cutoff at
finite energies (not shown).

The above results suggest a certain robustness of the
trapping effect which we have further analyzed by quali-
tatively considering losses. This is accomplished by cou-
pling the TLS to a second waveguide that can deexcite the
TLS into modes other than those of the original waveguide.
The incorporation of this ‘“loss channel” into the
Hamiltonian (1) thus proceeds by adding two additional
terms analogous to, respectively, the first (hopping term J')
and third term (coupling term V') of the rhs of (1). Clearly,
the hopping term J' has to be chosen such that the energies
of the bound photon-atom states that are associated with
the first waveguide and the TLS alone lie in the band of the
second waveguide. In Fig. 4, we display the time evolution
of the TLS’ excited-state occupation for different coupling
strengths V'’ of the TLS to such a “broadband loss wave-
guide.” The trapping effect persists even for rather strong
coupling to the loss channel. If we, for instance, interpret
the coupling to the loss waveguide as a (admittedly crude)
model for fabrication tolerances that in a quasi-one-
dimensional system couple strictly guided modes to a
continuum of radiative modes, we are led to speculate
that the trapping effect would be observable in experimen-
tally accessible systems.

Finally, we have analyzed the possibility of tuning the
trapped photon population at the TLS site. To do so, we
have prepared two identical single-photon wave packets on
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FIG. 3 (color online). Impurity occupation (n,) in the long-
time limit (see Fig. 1) after scattering of two-photon states for
different system parameters V (in units of J) and () (in units of
J). The fixed parameters are: L = 199a, x, = 100a, x, = 70a,
s = 12a, and k = 37 /4a.
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FIG. 4 (color online). Time evolution (in units of #/J) of the
impurity occupation {n) for initial two-photon states (see Fig. 1)
where a broadband loss waveguide has been introduced. The
corresponding system parameters are (loss waveguide’s parame-
ters are primed): L = L' = 399qa, xq = x{, = 200a, ) = V27,
V = J,and J' = 2J. The strength of the coupling V' (in units of
J) to the loss channel is varied. The photon parameters are x. =
175a, s = 6a, and k = 37 /4a.

different sides of the TLS and have launched them towards
the TLS. By changing their initial relative separation to the
TLS, we can exert some control over the multiparticle
processes in the Hamiltonian (2) (see Fig. 5). While the
dynamics is (expectedly) rather distinct for the different
cases, we observe monotonic behavior of the trapped
population: maximal trapping occurs for symmetrically
launched pulses with zero relative initial distance. For
increased distances the trapped population decreases to
zero once there is no overlap of the pulses at the TLS site.
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FIG. 5 (color online). Time evolution (in units of #/J) of the
impurity occupation {n;) for a system where two single-photon
Gaussian wave packets of width s = 7a with different initial
positions (xg.l) and xﬁ?)) are launched from different sides towards
the TLS. The corresponding system parameters are L = 199a,
xo = 100a, Q = +/2J, and V = J. The photon parameters are
x =50a, kD =37/4a = —k@, and the initial position
xE?) = 150a + A, is varied.

In conclusion, we have analyzed the dynamics of photon
transport in waveguiding systems in the presence of a TLS
within the context of a quantum many-body framework.
Our reformulation (2) allows us to identify strong multi-
particle processes that may be utilized to excite and control
photon-atom bound states. In turn, this facilitates trapping
of radiation at the TLS. In addition, we have shown that
this trapping effect exhibits a certain degree of robustness
and can be found in a number of systems. Since few-photon
(or low intensity) coherent states are superpositions of a
few Fock states only (those that we have discussed in the
present work), we expect that the excitation and control of
the photon-atom bound states and associated effects will
also occur in such situations.

Finally, we would like to emphasize the generality of our
approach which is capable of treating systems with arbi-
trary dispersion relations and atom-field coupling strengths
both in real and momentum space. Thus, the trapping of the
photon population and its control suggest that such systems
may be exploited for engineering photon entanglement as
well as for the realization of quantum logic circuits in a
number of systems that range from silicon integrated opti-
cal elements all the way to superconducting quantum
circuits for microwave photons.
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