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The effects of Coulomb interaction screening on electron-hydrogen atom excitation in the n ¼ 2

threshold region are investigated by using the R-matrix method with pseudostates. The interaction

screening lifts the l degeneracy of n ¼ 2 Coulomb energy level, producing two distinct thresholds for

2s and 2p states. The phenomenon of transformation of 1;3P and 1D Feshbach resonances into shape-type

resonances is observed when they pass across the 2s and 2p threshold, respectively, as the interaction

screening increases. It is shown that this resonance transformation leads to dramatic effects in the 1s ! 2s

and 1s ! 2p excitation collision strengths in the n ¼ 2 threshold collision energy region.
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Screened Coulomb interaction between charged par-
ticles appears in many physical systems (hot, dense plas-
mas, electrolytes, solid-state matter) and profoundly af-
fects the structure and collision properties of composite
particles in these systems [1–3]. The Coulomb interaction
screening in these systems is a collective effect of corre-
lated many-particle interactions, and in the lowest particle
correlation order (pairwise correlations) it reduces to the
Debye-Hückel (Yukawa-type) potential. For the interaction
of an ion of charge Z with an electron it has the familiar
form [1–3]

VðrÞ ¼ �Ze2

r
exp

�
� r

D

�
; (1)

where D is the screening length. In a plasma, D ¼
ðkBTe=4�e

2neÞ1=2, with Te and ne being the plasma elec-
tron temperature and density, respectively, and kB the
Boltzmann constant.

Motivated mainly by the spectroscopic studies of hot,
dense plasmas [4], a number of theoretical investigations
have been carried out on the plasma screening effects in the
electron-hydrogen-like ion excitation [5–9] and ionization
[10] collisions by using the potential (1) within the Born
[5,7–10] or two-state close-coupling [6] approximations.
These papers, however, have not addressed the question of
the effects of screened Coulomb interaction on the reso-
nances around the thresholds of inelastic processes.

The purpose of the present Letter is to investigate the
Coulomb interaction screening effects on the 1s ! 2s and
1s ! 2p excitation in electron-hydrogen atom collisions
in the n ¼ 2 resonant energy region by employing the
R-matrix method with pseudostates (RMPS). While far
from the resonant energy region the Coulomb interaction
screening leads generally to reduction of the cross section

for a specific process, in the resonant region it leads to
dramatic changes both in its magnitude and structure. As it
is revealed in the present work, the major effect of the
Coulomb interactions screening in the resonant energy
region is the transformation of Feshbach resonances into
shape-type resonances, which is reflected in dramatic
changes in the cross section structure and magnitude with
respect to the unscreened case. As we shall see later, this
phenomenon has a general nature and is related to the
coupling of two-electron states with different angular mo-
mentum in the threshold region when the Coulomb inter-
action is screened and should, therefore, manifest itself in
the higher-n threshold excitation regions as well.
As it is well known (see, e.g., [11]), resonances in

electron-atom collisions arise when the effective potential
seen by the incident electron is capable of supporting one
or more bound states. Feshbach resonances occur when the
collisional complex forms a transient doubly excited state
which subsequently decays by emission of an electron and
the resonance lies energetically below the parent target
state. Shape resonances occur when the intermediate state
formed during the collision lies energetically above the
parent target state, the electron is trapped by the centrifugal
barrier and escapes by tunneling. The study of the effects
of Coulomb interaction screening on the dynamic behavior
of resonances when the screening strength changes is of
significant interest and can provide an insight in the overall
excitation dynamics.
The most prominent feature of the potential (1), which is

the source of the new phenomena in the cross section
behavior in the resonant region, is the lifting of the
Coulomb l degeneracy of hydrogenic energy levels (see,
e.g., [12]). The hydrogenic n threshold is now split into n
components, the energy difference between which in-

PRL 104, 023203 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

15 JANUARY 2010

0031-9007=10=104(2)=023203(4) 023203-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.023203


creases with decreasing the screening length D. Another
important feature of the potential (1) is that for any finite
value of D, it supports only a finite number of bound nl
states. This implies that with decreasing D, the binding
energies of nl states decrease and the nl energy levels
successively enter in the continuum at certain critical
screening Dnl, obeying the relations Dnþ1;l > Dnl and

Dn;lþ1 >Dnl. For the 1s, 2s, and 2p states, the Dnl values

are 0.840, 3.223, and 4.541 atomic units, respectively [13].
Furthermore, with decreasing D, the excitation threshold
energies also decrease. For a given n, the states with lower l
value have lower thresholds for any fixed value of D. As a
consequence of the decrease of energies of bound states
when D decreases, the corresponding wave functions be-

come increasingly more diffuse, with obvious effects on
the near-threshold processes.
The R-matrix method for electron-atom and

photon-atom interactions has been discussed in detail
by Burke et al. [14,15], and it is not necessary to re-
peat its description here. The physical orbitals of the
hydrogen atom with the screened Coulomb po-
tential (1) are calculated by piecewise exact power
series expansions of the radial function [16], while the
pseudo-orbitals are optimized by the CIV3 compu-
ter code [17]. The R-matrix code uses a modified
version based on the UK [18,19] atomic R-matrix packages
in which the Coulomb interactions in the (N þ 1)-electron
nonrelativistic Hamiltonian are replaced by Yukawa-type
screened Coulomb interactions (in atomic units):

HNþ1 ¼ XNþ1

n¼1

�
� 1

2
r2

n � Z

rn
� expð�rn �D�1Þ þ XNþ1

m>n

1

rmn

� expð�rmn �D�1Þ
�
; (2)

where rn is the electron radius vector (with respect to the nucleus Z), rmn ¼ jrm � rnj is the interelectron distance, andD is
the screening length. The electron-electron interaction term is expanded as [20,21]:

Vee ¼ expð�rmnD
�1Þ

rmn

¼
(P1

l¼0
rl<
rlþ1
>

Plðcos�Þ D�1 ¼ 0

�D�1
P1

l¼0ð2lþ 1ÞjlðiD�1r<Þhð1Þl ðiD�1r>ÞPlðcos�Þ D�1 > 0
; (3)

where r> ¼ maxðrm; rnÞ, r< ¼ minðrm; rnÞ, Pl, jl, and h
ð1Þ
l

are the Legendre polynomials, the spherical Bessel func-
tions, and the spherical Hankel functions of the first kind
with complex argument, respectively.

In order to check the sufficiency of the basis set used in
our RMPS calculations, we have first considered the
nonscreened case by using 14 physical states (1s-5s,
2p-5p, 3d-5d, 4f, 5f) and four pseudostates (6s, 6p, 6d,
6f) in the expansion (2) and have calculated the 1s ! 2s
and 1s ! 2p excitation cross sections and resonance pa-
rameters for the collision energy range between the n ¼ 2
and n ¼ 3 excitation thresholds. The latter were calculated
by the eigenphase sum method [11,22]. Our results agreed
very well with the 18-state basis variational results of
Callaway [22] (up to four or five digits in the resonance
parameters values), the benchmark cross section calcula-
tions of Bartschat et al. [23] (using the convergent close-
coupling, RMPS, and intermediate-energy R-matrix meth-
ods), and the experimental data of Williams [24]. This test
served as a guide to determining the size of the basis in the
calculations with interaction screening. By checking the
convergence of the results for each value ofD, it was found
that for D< 30 a:u:, the accuracy of the results is not
compromised if the number of physical states in the basis
is progressively reduced (with decreasing of D) and the
number of pseudostates is progressively augmented. This
is a reflection of the fact that with decreasing D, the
discrete states in the potential (1) successively enter in
the continuum.

The most pronounced resonances in the n ¼ 2 threshold
region in the nonscreened case are the 1Seð1; 2; 3Þ, 3Se,

1Poð1Þ, 3Poð1; 2Þ, 1De Feshbach resonances and the 1Poð2Þ
shape resonance, and these have been thoroughly studied
in the past. (The resonance with a given symmetry having a
larger number in the parentheses is closer to the threshold.)
Figure 1 shows the change of the width of resonances when
D decreases from D ¼ 1 to D ¼ 3:8 a:u: The figure
shows that with decreasing D, the width of a Feshbach
resonance changes dramatically when it approaches the 2s
threshold. The character of these changes is quite different
for 1;3S and for 1;3P, 1D resonance. The widths of the
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FIG. 1 (color online). The variation of the width of Feshbach
and shape resonances when the screening length decreases. Short
dashed lines represent the critical values of D where Feshbach
resonances pass across the 2s or 2p threshold.

PRL 104, 023203 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

15 JANUARY 2010

023203-2



former, converging to the 2s threshold, rapidly decrease
when the resonance approaches the threshold before it
merges with the parent 2s state. [Note that for 3Seð3Þ,
this happens already at D� 100� 80 a:u:] The widths of
1;3P Feshbach resonances also considerably decrease when
they approach the 2s threshold, but after passing it, their
widths start to increase rapidly, a signature of the shape
resonance [see the D dependence of the 1Poð2Þ shape
resonance in Fig. 1]. The transformation of a 1;3P
Feshbach resonance into a shape resonance can be under-
stood by taking into account the quasidegeneracy of 2s and
2p thresholds (even for finite D) in which case the two-
electron states are described as 2snp� 2pns superposi-
tions [25]. As demonstrated in [26] for 1P states for the
unscreened case, in the hyperspherical coordinate descrip-
tion of two-electron states the potential for the ‘‘�’’ state,
defined above, supports bound states below the n ¼ 2
threshold [corresponding to the 1Poð1Þ Feshbach reso-
nance], while that for the ‘‘þ’’ state it is not strong enough
to support bound states but exhibits a potential barrier
above the threshold which supports a quasibound state
[corresponding to the 1Poð2Þ shape resonance]. In the
screened case, because with decreasing D the wave func-
tions become more and more diffuse, the 2p state can also
mix with higher l states. Having in mind that for finite D
the 2s and 2p thresholds are separated, this mixing pro-
duces a barrier in the ‘‘�’’ potential. Therefore, after
passing the 2s threshold, the 1Poð1Þ state is prone to
under-barrier decay (i.e., becomes a shape resonance).
The same mixing, however, does not considerably change
the existing barrier in the ‘‘þ’’ potential. The mixing of the
2p state with the d states is also responsible for the change
of character of the 3Poð1; 2Þ resonances. For the 1Poð1Þ,
3Poð1Þ, and 3Poð2Þ resonances, the critical screening
length, Dc, where the Feshbach resonance passes the 2s
threshold, lies in the regions 30–29 a:u:, 48–45 a:u:, and
6:3–6:2 a:u:, respectively. We note that with decreasing D,
the 2s threshold decreases, the wave functions of both
bound and quasibound states become increasingly more
diffuse, and both of these factors contribute to the rapid
increase of the widths of shape resonances with decreasing
D, as observed in Fig. 1.

The 1D resonance in Fig. 1 shows specific behavior in
the region of D between the 2s and 2p thresholds
(19 a:u: � D � 14 a:u:). The ‘‘þ’’ and ‘‘�’’ superposi-
tions for the 1D resonance are made up of the 2snd and
2pnp two-electron states. The behavior of the width before
and after passing the 2p threshold can be taken as an
indication of the existence of two barriers in the system
of ‘‘�’’ potentials. This behavior also suggests that only
one of these potentials can support bound states. After
passing the 2p threshold at Dc � 13 a:u:, 1D becomes a
typical shape resonance with sharply increasing width.

It should be noted that the widths of shape resonances
1Poð2Þ, 3Poð1Þ, and 1De become very large (larger than
0.015 Ry) for D � 7 a:u: D � 4:2 a:u:, and D � 5:0 a:u:,
respectively, which makes their determination (as well as

the resonance positions) rather uncertain. It is interesting to
note that the 3Poð1Þ shape resonance survives down to
3.8 a.u. (the last D value of our investigations), despite
the fact that the 2p state for D<D2p ¼ 4:541 a:u: is
already in the continuum.
In Fig. 2, the 1s ! 2s [panels (a) and (b)] and 1s ! 2p

[panel (c)] excitation collision strengths are shown in the
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FIG. 2 (color online). Dynamic evolution of 1s ! 2s [panels
(a) and (b)] and 1s ! 2p [panel (c)] collision strengths when the
screening length varies (Debye length increases from left to
right).
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n ¼ 2 resonant energy region when the screening lengthD
decreases from D ¼ 1 to D ¼ 8 a:u:, and the binding
energies of 2s and 2p states with changing D are shown
in the inset in Fig. 2(a). The significant changes in the
structure and values of the collisions strengths, especially
for the 1s ! 2s transition, are obviously related to the
changes of the resonance parameters when D decreases,
particularly in the regions of D where 1;3P and 1D
Feshbach resonances change their character. These peaks
are clearly observed in the 1s ! 2s collision strength for
D ¼ 45 a:u: (at E ¼ 0:747 94 Ry) and for D ¼ 29 a:u: (at
E ¼ 0:745 118 Ry) in Fig. 2(a), where the 3Poð2Þ and
1Poð1Þ resonances have already acquired a shape-type
character. The resonant structure in Fig. 2(b) reflects the
effects of 1De resonance on the 1s ! 2s collision strength
after passing the 2s threshold atD � 19 a:u:. After passing
the 2p threshold at E ¼ 0:739 402 Ry (D ¼ 13 a:u:), the
1De resonance gives the main contribution to the 1s ! 2p
collision strength as seen in Fig. 2(c). [For D> 14 a:u:,
this collision strength in the energy range considered is
dominated by the 1Poð2Þ shape resonance.]

The relatively small but sharp peaks (cusps) observed in
the 1s ! 2s collision strength [see Fig. 2(a) and the inset
of Fig. 2(b)] represent the effects of virtual states [27]
associated with the 3Poð2Þ (for D< 34 a:u:), 1Poð1Þ (for
D< 21 a:u:), and 1Seð2Þ (for D< 27 a:u:) when these
states approach the 2p and 2s thresholds, respectively.
We should note that similar virtual state effects have also
been observed in the electron-helium excitation cross sec-
tions in the n ¼ 2 thresholds region [27–29], where the
Coulomb degeneracy is also lifted.

In conclusion, the present study has revealed that the
screening of the Coulomb interaction has important effects
on the electron-hydrogen atom excitation processes in n ¼
2 threshold region. The lifting of the Coulomb l degener-
acy by the potential screening results in separation of 2s
and 2p thresholds, which profoundly affects the dynamics
of near-threshold excitation processes. It was found that
the decrease of the screening length, D, leads to transition
of Feshbach 1;3P and 1D resonances to shape-type reso-
nances when D passes the critical value Dc for which the
resonance position is equal to the corresponding threshold.
This transition produces significant changes in the reso-
nance width and, consequently, in the evolution of collision
strength when D varies. Another important effect of the
Coulomb interaction screening is the reduction of the
number of resonances (as a result of the merging of 1;3S
resonances with their parent states and the rapid decay of
shape resonances for small D). Although the present study
was restricted to the n ¼ 2 threshold energy range, the
above conclusions have a general character. This has
been confirmed by our RMPS calculations and resonance
analysis in the energy range around the n ¼ 3 thresholds.
A detailed presentation of the evolution of collision
strengths and resonance parameters for the n ¼ 2 and n ¼
3 resonant regions when the screening length varies will be
given in forthcoming papers.
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