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The first example of an empirically manifested quasidynamical symmetry trajectory in the interior of

the symmetry triangle of the interacting boson approximation model is identified for large boson numbers.

Along this curve, extending from SU(3) to near the critical line of the first order phase transition, spectra

exhibit nearly the same degeneracies that characterize the low energy levels of SU(3). This trajectory also

lies close to the Alhassid-Whelan arc of regularity, the unique interior region of regular behavior

connecting the SU(3) and U(5) vertices, thus offering a possible symmetry-based interpretation of that

narrow zone of regularity amidst regions of more chaotic spectra.
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Mesoscopic systems are often considered from the com-
plementary perspectives of the degrees of freedom of
individual constituents and their interactions, and that of
the many-body system as a whole, with its global charac-
teristics, symmetries, and quantum numbers. Studies from
the latter perspective can often explain the remarkable
regularities such systems exhibit and reveal simple facets,
such as collective correlations, that may be difficult to
discern from a microscopic approach.

Degeneracies in energy spectra are one manifestation of
the symmetries underlying the collective Hamiltonian of
many-body systems. For example, degeneracies in the
spectrum of the three-dimensional harmonic oscillator re-
flect the underlying Uð3Þ � Oð3Þ symmetry [1]. Of course,
many-body symmetries are broken in actual physical sys-
tems. The study of symmetry breaking often reveals subtle,
yet important, aspects of the collective physics. For ex-
ample, the breaking of the harmonic oscillator degenera-
cies can shed light on phonon-phonon interactions.

A fascinating recent aspect of symmetry breaking is
that, in some cases, despite considerable deviations of the
wave functions from a given symmetry, some properties
of that symmetry, such as characteristic degeneracies, per-
sist. Such systems can be described in terms of partial
dynamical symmetries [2–4] [situations for which all of
the states preserve part of the dynamical symmetry (DS) or
part of the states preserve all or part of the DS] or quasi-
dynamical symmetries (QDS) [5–9] (symmetries that
persist in spite of strong symmetry-breaking interactions).
In a QDS a subset of observables exhibits all the properties
of a symmetry, while others reveal the symmetry to be
broken [7].

This Letter will focus on a new QDS relevant to atomic
nuclei. We work in the context of the interacting boson
approximation (IBA) model [10], which is couched in a
group theoretical framework, with wide applicability [11]
in molecular and chemical systems. Thus, the ideas devel-
oped here should themselves be of wide interest.

The IBA possesses an overall U(6) symmetry with three
dynamical symmetries, labeled by subgroups of U(6),
namely, U(5) (appropriate for spherical vibrational nuclei),
SU(3) (suitable for certain prolate deformed nuclei), and
O(6) (proper for certain axially asymmetric nuclei). These
symmetries are traditionally placed at the vertices of a
triangle [12], as in Fig. 1 (top). Certain symmetry aspects
persist elsewhere in the triangle. For example, the entire
upper left line between U(5) and O(6) contains an under-
lying symmetry [13] called O(5), corresponding to poten-
tials independent of axial asymmetry (�-unstable
potentials). Along this line there is a high degree of energy
degeneracy. QDS occur along other legs of the triangle [5–
9] in which certain properties of U(5), SU(3), or O(6) are
preserved (except near the phase transitional points). No
other line possessing any underlying symmetry higher than
SO(3), necessary for rotational invariance and present
everywhere in the triangle, is known to exist.
It is the purpose of this Letter to show the first example

of a QDS trajectory in the interior of the triangle. It is
based on SU(3) and its locus, shown in Fig. 1, extends from
SU(3) nearly to the region of coexistence [14] of spherical
and deformed phases. Moreover, we will show that this
curve lies within a narrow internal region proposed 20 years
ago [15,16], called the arc of regularity, in which spectra
exhibit a high degree of order, whereas chaotic behavior is
found nearly everywhere else. It has long been speculated
that this arc (solid curve in Fig. 1) reflected some under-
lying symmetry, but the nature of that symmetry had not
heretofore been elucidated. We suggest, from an extensive
analysis of the low energy part of the spectrum, that that
symmetry is, in fact, the SU(3) QDS we have identified.
In what follows we use the IBA Hamiltonian [15–17]

Hð�;�Þ ¼ c

�
�n̂d þ �� 1

NB

Q̂� � Q̂�

�
; (1)

where n̂d ¼ dy � ~d, Q̂� ¼ ðsy ~dþ dysÞ þ �ðdy ~dÞð2Þ, NB is
the number of valence bosons, and c is a scaling factor.
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This popular Hamiltonian contains two parameters, � and
�, with � ranging from 0 to 1, and � ranging from 0 to

� ffiffiffi
7

p
=2 ¼ �1:32 and allows for symmetry breaking. Any

pair of ð�;�Þ values can be mapped [18] onto the triangle.

For � ¼ � ffiffiffi
7

p
=2 the shape coexistence region occurs at

�� 0:8. Equation (1) has an alternate form using parame-
ters ð�; �Þ. The coexistence region then occurs for � � 0:5,
but the physics is identical. We utilize the � form to be
consistent with Refs. [15,16]. Numerical calculations of
energy levels have been performed using the code IBAR

[19,20], which can handle boson numbers up to NB ¼ 250.
A hallmark of SU(3) is degeneracies within sets of bands

comprising a given irreducible representation (irrep), such
as those between the levels of the � band and those [with
the same (even) L] of the � band. To inspect whether these
degeneracies approximately persist for parameters that
deviate from SU(3) we use, as a measure of degeneracy
breaking between the � and � band, the rms deviation

��� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPLmax

2 ½EðLþ
� Þ � EðLþ

� Þ�2
ðLmax=2Þ � 1

vuut
; (2)

where Lþ
� ¼ Lþ

� and energies are normalized to Eð2þ1 Þ.

Another hallmark of SU(3) behavior at low energies is
the position and degeneracies of the 0þ bandheads belong-
ing to different irreps, determined by the second order
Casimir operator of SU(3) and reported in Ref. [21]. In
order to examine to which degree the 0þ states occurring in
a calculation obey the SU(3) rules, we use the relevant rms
deviation

�0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPimax

3 ½Eð0þi Þth � Eð0þi ÞSUð3Þ�2
imax � 3

vuut
; (3)

with all energies normalized to Eð0þ2 Þ and considering the
lowest nine 0þ states (i.e., imax ¼ 9).
The tools used in this study (��� and �0) are based on

the degeneracies and regularities exhibited by SU(3) for
large boson numbers and at low energy. At higher energies
the 3D harmonic oscillator degeneracies of 0þ states fade
away (for NB ¼ 250 these degeneracies are exhibited
clearly by the lowest 110 0þ states out of 5334), thereby
also removing degeneracies between higher L states built
on different 0þ bandheads. For these higher energies,
statistical tools would have to be used [15,16].
We start by looking for the point of the Eð2þ� Þ ¼ Eð2þ� Þ

degeneracy by keeping � constant and varying � [a trajec-
tory parallel to the O(6)-SU(3) line but interior in the
triangle for� � 0]. We find, as illustrated in Fig. 2 for� ¼
0:632, that the location ofEð2þ� Þ ¼ Eð2þ� Þ also corresponds
to the minima in ��� and �0. This means that when

Eð2þ� Þ ¼ Eð2þ� Þ one simultaneously has EðLþ
� Þ � EðLþ

� Þ
for all even L values, the same degeneracies that character-
ize SU(3). An even more significant result is that, at the
point where Eð2þ� Þ ¼ Eð2þ� Þ, not only the � and � bands,

but all low-lying bands, to an excellent approximation,
have the same degeneracies as in SU(3). In addition, all
bands possess practically the same moments of inertia,
following the LðLþ 1Þ dependence on angular momentum
quite accurately. Figure 3 illustrates that, for nearly all
states, the deviation from SU(3) is <5%.
Perhaps more surprising, the simultaneous minimum in

�0 means that the 0þ bandheads also possess almost the
same relative energies as in SU(3). Even though energies of
sets of bands in a given SU(3) irrep may have moved
substantially, ratios of bandhead energies remain nearly
as in SU(3) and, within each set, the full set of SU(3)
energy degeneracies persists (see examples in Fig. 4).
The minima are sharper for increasing NB. NB ¼ 25 is
relevant for actual nuclei and NB ¼ 250 approaches the
classical limit.
Moreover, at the point of Eð2þ� Þ ¼ Eð2þ� Þ, intraband

BðE2Þ ratios within the ground and �1 bands exhibit
SU(3) values, while interband BðE2Þ’s [normalized to
BðE2; 2þ1 ! 0þ1 Þ] belonging to different SU(3) irreps,
which vanish in the SU(3) limit, remain at least 3 orders
of magnitude lower than intraband BðE2Þ values.
Figures 2–4 gave results for � ¼ 0:632. However,

the Hamiltonian actually gives a locus of ð�;�Þ points

FIG. 1 (color online). IBA symmetry triangle in the parame-
trization of Eq. (1) with the three dynamical symmetries and the
Alhassid-Whelan (AW) arc of regularity [15,16,23]. The shape
coexistence region [14] between spherical and deformed phases,
shown by slanted lines near the U(5) vertex, encloses a first order
phase transition terminating in a point of second order transition
on the U(5)-O(6) leg. The loci of the degeneracies Eð2þ� Þ ¼
Eð2þ� Þ (dashed line on the right, corresponding to the QDS

discussed in this Letter) and Eð4þ1 Þ ¼ Eð0þ2 Þ (dotted line on

the left) are shown for NB ¼ 250 (top) and NB ¼ 25 (bottom).
In the bottom part, the � diagram, based on Ref. [16] is shown.
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where the condition Eð2þ� Þ ¼ Eð2þ� Þ is met (dashed line to

the right of the transition region in Fig. 1). ForNB ¼ 250, it
ranges from ð�;�Þ � ð0:8;�0:5Þ to ð0;�1:32Þ at SU(3),
with only a weak dependence on NB except near
the coexistence region, as seen in Fig. 5(a). Figures 5(b)
and 5(c) show the SU(3) degeneracy measures ��� and �0

along this locus. They are extremely small from SU(3)
(� ¼ 0:0) to � values very close to the coexistence region
(� ¼ 0:8). For example, for NB ¼ 250, �0 < 0:1 almost to
� ¼ 0:8 and ��� < 0:4 down to �� 0:7. Near SU(3), the

quality of the SU(3) degeneracies depends only slightly on
NB, but drops substantially (i.e., ��� and �0 increase) for

lower NB near the coexistence region.
The above findings suggest that (for large NB) funda-

mental aspects of SU(3) at low energies—degeneracies,
relations among the 0þ bandheads, and BðE2Þ values—are
robust, not limited to its vertex, but extending deeply into
the triangle, until the critical line is approached. The
degeneracies within irreps, and among different irreps at
low energy in SU(3), are characteristic signatures of an
SU(3) QDS and thus the locus of these degeneracies is the
first known example of a QDS curve in the interior of the
symmetry triangle. Such degeneracies persist though the

wave functions are strong admixtures of SU(3) basis states.
This recalls the strong mixing but small energy shifts
arising from small perturbations to nearly degenerate lev-
els [22].
Given that QDS involve degeneracies (regularities in

energies), it is not surprising that their region is one of
higher overall regularity. Alhassid and Whelan [15,16] dis-
covered a unique arc of regularity which starts at SU(3) and
curves inside the triangle to the U(5) vertex (see Fig. 1),
depending only weakly on NB [16,23]. In Ref. [17], 12
nuclei were shown to lie close to the arc.
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FIG. 3. Percent difference between SU(3) predictions and the
IBA results (NB ¼ 250, � ¼ 0:632, � ¼ �0:882) for
(a) L ¼ 4þ and (b) L ¼ 16þ states. The corresponding band-
head names (gsb, ground state band) are given on the horizontal
axis.

FIG. 4. Level scheme for an IBA calculation at a point where
Eð2þ� Þ ¼ Eð2þ� Þ. An expanded energy scale (�25) is used within

the boxes to show the small rotational energies. The
SU(3) 0þ bandheads are also shown.
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FIG. 2 (color online). The energy difference Eð2þ� Þ � Eð2þ� Þ
[normalized to Eð2þ1 Þ] and the quality measures ��� [Eq. (2), up

to Lmax ¼ 10] and �0 [Eq. (3), up to imax ¼ 9] are shown for
� ¼ 0:632, varying �, and boson numbers NB ¼ 25; 100; 250.
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It has long been suspected that the arc reflected an
underlying symmetry but none has ever been found.
However, the locus of SU(3) degeneracies in the triangle,
defining the SU(3) QDS discussed above, corresponds
closely to that of the arc of regularity [see Fig. 1 (top)],
suggesting that this interior QDS may provide its under-
lying symmetry. This is also evident in the � diagram in
Fig. 1 (bottom) (� is a measure of chaos, low values of �
indicating regularity). Thus, the present results show not
only the first example of an interior QDS line, but also that
it closely tracks the unique example of an interior arc of
regularity. (Degeneracies along the line of first order phase
transition have recently raised suspicions [24] of another
interior QDS, but the problem remains open.)

We note that, using the intrinsic state formalism in the
NB ! 1 limit, Ref. [25] found that the degeneracy of the
�1 and �1 bandheads practically coincides with the present
line of Eð2þ� Þ ¼ Eð2þ� Þ for NB ¼ 250, as well as to the

locus of changes in properties of the � vibration. In addi-
tion, the region of validity of the SU(3) QDS inside the
Casten triangle, as well as critical behavior within the low-
lying spectrum due to a degeneracy of the � and � vibra-
tions, have been considered in detail in Ref. [26].

To the left of the coexistence region, one can consider
the Eð4þ1 Þ ¼ Eð0þ2 Þ degeneracy, which characterizes U(5)

[10]. This line is included in Fig. 1. However, for NB ¼
250, the fingerprints of U(5) are actually well preserved in
the whole region between U(5) and the critical line, and no
sharp minima of the type in Fig. 2 are found for U(5)
degeneracy measures. This agrees with Fig. 1 (bottom),

where most of the region between U(5) and the critical line
exhibits a high degree of regularity (low values of �).
In conclusion, using the degeneracy Eð2þ� Þ ¼ Eð2þ� Þ, we

have discovered a trajectory (dashed line in Fig. 1) from
SU(3) to near the phase coexistence region, along which
spectra exhibit nearly the same degeneracies as exhibited
by SU(3) at low energies for large boson numbers, thus
offering the first example of a quasidynamical symmetry
curve in the interior of the triangle. The SU(3) degener-
acies deteriorate with decreasing boson number, but the
locus remains almost invariant. The trajectory of the QDS
falls within the Alhassid-Whelan arc of regularity, the
unique region of regular behavior connecting SU(3) and
U(5). These results suggest that there is indeed a symmetry
underlying the arc of regularity, at least at low energies,
and that it is the SU(3) QDS.
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FIG. 5 (color online). The j�j parameter values providing the
degeneracy Eð2þ� Þ ¼ Eð2þ� Þ and the quality measures ���

[Eq. (2), up to Lmax ¼ 10] and �0 [Eq. (3), up to imax ¼ 9] are
shown for different values of � and NB ¼ 25; 100; 250.
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