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We develop the finite temperature theory of p-adic string models. We find that the thermal properties of

these nonlocal field theories can be interpreted either as contributions of standard thermal modes with

energies proportional to the temperature, or inverse thermal modes with energies proportional to the

inverse of the temperature, leading to a thermal duality at leading order (genus one) analogous to the well-

known T duality of string theory. The p-adic strings also recover the asymptotic limits (high and low

temperature) for arbitrary genus that purely stringy calculations have yielded. We also discuss our findings

surrounding the nature of the Hagedorn transition.
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One of the most interesting thermal features of string
theory is the existence of the Hagedorn phase where at high
temperatures the energy is not dominated by the massless
modes but rather by the most massive string states, leading
to a pressureless fluid [1–3]. In fact, a canonical description
of the thermal phase indicated a limiting Hagedorn tem-
perature [1]. Later, however, it was argued that the limiting
temperature only corresponds to the emergence of a ther-
mal tachyonic mode making the description of the system
in terms of fundamental string excitations invalid [4]. It
was further argued that at temperatures larger than the
Hagedorn temperature, the free energy F grows much
more slowly, F / T2, as compared to conventional field
theories where F / T4, and thus the system represents
many fewer degrees of freedom than one would have
expected from the zero-temperature string spectrum, or
even particle field theories [5].

Another nontrivial aspect of the stringy partition func-
tion that has been studied in the literature [5–8] has to do
with the (non-)existence of a thermal duality (T $ 1=T) in
close analogy with T duality. In the canonical thermal
computation of string models, due to the compact nature
of one dimension, there is not only the standard contribu-
tion of Matsubara thermal modes,!n ¼ 2�nT (where n 2
Z), but also the topological contribution of strings wrapped
on the torus S1 of circumference 1=T [5,6]: !W ¼
jnW jm2

s=�T, where ms is at the string scale (m2
s ¼

1=2�0) and where the winding states are labeled by the
first homotopy group �1ðS1Þ ¼ Z (see Fig. 1). Therefore,
the thermal duality is defined by making the replacements

2�T ! m2
s

�T
and n ! nW: (1)

This symmetry naı̈vely suggests that the partition function
verifies

ZðTÞ ¼ Z

�
T2
c

T

�
; (2)

with Tc ¼ ms=�
ffiffiffi
2
p

. The existence of such a duality has
been verified in several stringy computations, such as in
[5–7]. Indeed, the Hagedorn temperature is closely related
to this critical temperature, TH ¼ Tc=a, although the exact
relation between the temperatures depends on the particu-

lar string theory (a ¼ 2 for the bosonic string, a ¼ ffiffiffi
2
p

for

the type II superstring, or a ¼ 1þ 1=
ffiffiffi
2
p

for the heterotic
string [8]).
In this Letter, we develop a new approach to these

questions by studying the thermodynamics of p-adic string
models that are given by the action [9,10]

S ¼ mD
s

g2p

Z
dDx

�
� 1

2
�p�h=2m2

s�þ 1

pþ 1
�pþ1

�
; (3)

where h ¼ �@2t þr2
D�1 in flat space, and we have de-

fined the p-adic coupling g2p ¼ g2oðp� 1Þ=p2 in terms of

the open string coupling go. The dimensionless scalar field
�ðxÞ describes the open string tachyon. This action was
originally derived for p being a prime number, although it
has been continued to other positive values [11].
The action (3) describes a nonlocal theory for the

tachyon field that reproduces the N-point tree amplitudes
of non-Archimedean open strings [9,10]. In this sense, it
can be understood as a simplified model of the bosonic

FIG. 1. Schematic description of string thermal modes. In
string theory, the thermal computation can be understood by
studying the propagation of fields in Rd�1 � S1. The left plot
shows the zero thermal state. In string theories, there are not only
the standard thermal modes associated with the quantization of
momentum, as the one in the middle (n ¼ 11), but also topo-
logical winding modes as the right one (nW ¼ 1).
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string which reproduces some aspects of a more realistic
theory. That being said, there are several nontrivial sim-
ilarities between p-adic string theory and the full string
theory. For example, near the true vacuum of the theory,
� ¼ 0, the field has no obvious particlelike excitations
since its mass squared goes to infinity. This is the p-adic
version of the statement that there are no open string
excitations of the tachyon vacuum. A second similarity is
the existence of lumplike soliton solutions representing
p-adic D-branes [12]. The theory of small fluctuations
about these lump solutions has a spectrum of equally
spaced masses squared [12,13], just as in the case of
normal bosonic string theory. One also obtains a very
similar action with exponential kinetic operators (and usu-
ally assumed to have a cubic or quartic potential) while
quantizing strings on a random lattice [14]. These field
theories are also known to reproduce several features, such
as the Regge behavior [15], of their stringy duals.

Like most higher derivative theories, these theories have
better ultraviolet (uv) convergence. Unlike finite-order
higher derivative theories, by virtue of having an infinite
set of higher derivative terms, they have been conjectured
to be free of ghosts and to have a well-posed initial value
problem [16–18], making them phenomenologically inter-
esting to study. In particular, these models have been found
to provide novel cosmological properties such as non-
slow-roll inflation [19], crossing of the phantom divide in
the context of dark energy [20], and for obtaining non-
singular bouncing solutions [21] (see also [22] for similar
work with nonlocal gravitational actions). However, most
of these analyses have largely been classical, and little
attention has been paid to quantum loop calculations (see
[15,23] for an exception).

Here we focus our attention on finite temperature loop
calculations. We compare our results with standard thermal
properties of string theory and, in particular, with the
thermal duality and the stringy Hagedorn phase. These
have found several cosmological applications, especially
in the context of cyclic or bouncing cosmologies [24] and
thermal structure formation scenarios [25]. We will pro-
vide results for D ¼ 4 and p ¼ 3, but most of the tech-
niques developed here can be generalized to similar
nonlocal models, and similar results are obtained for D �
4, p � 3 [26].

The finite temperature action is

S ¼
Z �

0
d�

Z
d3x½�1

2’e
�ð@2�þr2Þ=M2

’� �’4�; (4)

where we have performed the rescaling

’ � m2
s

g3
�; � � � 1

18

g2o
m4

s

; M2 � 2m2
s

ln3
: (5)

We note that � and the rescaled’ have mass dimension�4
and 2, respectively. Analysis of this model follows very
closely that of the usual scalar theory at finite temperature

[27], except that one has to replace the usual field theory
propagator with the exponential one [26]

1

p2 ¼
1

p2 þ!2
n

! D0ð!n;pÞ � e�p2=M2 ¼ e�ðp2þ!2
nÞ=M2

:

(6)

The Feynman vertices are identical to those of the usual
scalar theory, but in this case, the free theory does not give
any contribution to the partition function, lnZ1 ¼ 0, con-
sistent with the fact that p-adic strings have no perturbative
excitations. The only two-loop diagram is given in Fig. 2.
There is a combinatoric factor of 3 and a factor (��)
associated with the vertex:

lnZ2 ¼ 3ð��Þ�V
�
T
X
n

Z d3p

ð2�Þ3 D0ð!n;pÞ
�
2
: (7)

Because of the exponential nature of the bare propaga-
tor, the loop diagrams are convergent in the ultraviolet
limit:

lnZ2 ¼ � 3�VM6T

26�3
&2
�
2�T

M

�
; (8)

where the function &ðxÞ can be written in terms of the third

Jacobi elliptic theta function: &ðxÞ ¼ #3ð0; e�x2Þ.
Remarkably, one can write this function as [28]:

&ðxÞ ¼ X1
n¼�1

e�n2x2 ¼
ffiffiffiffi
�
p
x

X1
m¼�1

e�ðm2�2=x2Þ ¼
ffiffiffiffi
�
p
x

&

�
�

x

�
:

(9)

The first equality shows explicitly the contribution of the
nth thermal mode. In contrast with a standard quantum
field theory, one can see that the higher thermal modes are
strongly suppressed at high temperatures (see also Fig. 3).
When x! 1, the leading term is given by the zero mode
(n ¼ 0). In this limit, the next contribution is given by the
first modes (n ¼ þ1 and n ¼ �1), etc., More interest-
ingly, Eq. (9) suggests that at low temperatures, the parti-
tion function can be interpreted as the addition of
contributions of a different set of modes. These new modes
are not proportional to the temperature but to the inverse of
the temperature. When x! 0, the leading term is given by
the inverse zero mode (m ¼ 0). The next-to-leading order
contribution is given by the first inverse modes (m ¼ þ1
and m ¼ �1), and so on.

FIG. 2. The one-loop diagram on the left does not contribute to
the partition function. It shows that the free theory is empty. The
two-loop diagram on the right constitutes the leading order
contribution, first order in �.
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Moreover, we can use the property given by Eq. (9) to
show that Eq. (2) is verified by defining the critical tem-
perature as Tc ¼ T2 � M=2

ffiffiffiffi
�
p

. This property is precisely
what was predicted by string theory [5,6], and it is abso-
lutely nontrivial in p-adic string models. As we discussed,
this symmetry is present in string theory due to the exis-
tence of winding topological string modes, but in p-adic
models there are no obvious topological counterparts be-
cause we are working with a quantum field theory. Indeed,
the duality is just a consequence of the Poisson resumma-

tion formula given by Eq. (9), since #nð0; e�x2Þ are invari-
ant by Poisson resummation [28].

Since &ðxÞ can be represented as a series of exponentials,
one can obtain excellent high and low temperature approxi-
mations to &ðxÞ. In particular, one finds

lnZ2 !
�¼ ��V=T; T � M
¼ �4��TV=M2; T � M

; (10)

where � � 3�T8
2 is the cosmological constant. This is

precisely the kind of asymptotic behavior that has been
suggested in the stringy literature [5,8].

The pressure P, entropy density s, and energy density �
at this order look like

P ¼ @ðT lnZ2Þ
@V

¼
���; T � M
�4��T2=M2; T � M

; (11)

s ¼ @ðT lnZ2Þ
V@T

¼
�
0; T � M
�8��T=M2; T � M

; (12)

� ¼ T2

V

@ðlnZ2Þ
@T

¼
�
�; T � M
�4��T2=M2; T � M:

(13)

The two asymptotic limits mark the two opposite ends of
the acceptable range of values for ! ¼ P=�. We also note
that requiring the entropy density to be positive implies
� < 0, as it is required for p-adic models. This means that
the contribution to the cosmological constant is negative,
as typical from a stringy approach (however, see [26]).
The next-to-leading order values for the low temperature

limit read

P ¼ ��� 4�e�M2=4T2 � ��þ PH; (14)

� ¼ �� 2
�M2

T2
e�M2=4T2 � ��þ �H: (15)

The above expressions have a simple interpretation in
terms of a cosmological constant plus an effective
Hagedorn fluid with energy density and pressure given
by �H and PH, respectively. In particular, we note that
the equation of state parameter of the Hagedorn fluid
vanishes in this limit:

!h � PH

�H

� 2
T2

M2
! 0 as

T

M
! 0; (16)

while the temperature changes very slowly (logarithmi-
cally) with the change of energy density. Qualitatively,
this is also what has been argued using stringy computa-
tions [1–3]; in the Hagedorn phase, the energy density is
dominated by the most massive string states and hence
behaves as a pressureless fluid, with temperature remaining
almost a constant. However, unlike [1], our partition func-
tion does not suffer from the problem of having a negative
heat capacity and gives way to the ! � 1 stiff fluid phase
at high temperatures. From Eq. (8) and Fig. 3, we conclude
that our phase transition is smooth and not a first order
phase transition, as has been conjectured from string the-
ory. More recently, the possibility of such a smooth tran-
sition has also been suggested [8,29], although in [8], a
different higher temperature was identified to correspond
to much milder phase transitions in some supersymmetric
string models.
It has been argued that the duality relation (2) must be

broken when nonperturbative effects are included [5,7].
We find that in our case, it is broken at the next order in
�. This contribution is given by the three-loop necklace
and sunset diagrams (see Fig. 4)

FIG. 4. Diagrams that contribute at second order in �. The one
on the left is the three-loop contribution to the necklace. The
right one is the so-called sunset diagram.
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FIG. 3 (color online). Partition function of the p-adic string
model for p ¼ 3, D ¼ 4, Tc ¼ T2, �T

4
c ¼ �0:04, and V ¼ T�3c .

The symmetry of Z2ðTÞ [solid (blue) line] with respect to Tc

(central vertical line) shows the exact realization of the thermal
duality. However, the duality is broken at high temperatures by
higher loop contributions [long dashed (green) line] or even at
low energies by the addition of a self-energy counterterm [short
dashed (red) line] [26].
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lnZ3;neck ¼ 9
ffiffiffi
2
p

�2VT2T9
2

�
&

�
T

ffiffiffiffi
�
p
T2

��
2
&

�
T

ffiffiffiffiffiffiffi
2�
p
T2

�
; (17)

lnZsunset ¼ 3

2
�2VT2T9

2�

�
T

ffiffiffiffi
�
p
T2

�
; (18)

where the function �ðxÞ can be written in terms of the third
Jacobi theta function.

� ¼
Z �

��
d	

2�

�
#3

�
1

2
	; e�x2

��
4
;

#3ðu; e�x2Þ �
X1

n¼�1
e�n2x2e2iun: (19)

Therefore, Eq. (2) is only verified at the leading order. In
any case, the fact that we can write all of the results in

terms of 	3ðu; e�x2Þ, which obeys

#3ðu; e�x2Þ ¼
ffiffiffiffi
�
p
x

e�u2=x2#3

�
i�u

x2
; e��2=x2

�
; (20)

allows an alternative interpretation in terms of inverse
modes, but they need to be weighted in a different way.

Comparison of Eqs. (17) and (18) with (8) indicates that
the expansion parameter is g2o at small temperature and
g2oT=ms at high temperature. In fact, one finds that at high
temperatures, N-loop diagrams generically give rise to a
contribution of the form lnZN / Vm3

sðg2oT=msÞN�1 [26],
precisely what was argued to be the contributions at
N-genus level for open strings [5]. Therefore, the two-
loop result is trustworthy as long as g2o � 1 and T �
ms=g

2
o, in particular, when T � TH.

In conclusion, we have tried to understand some of the
thermal properties of string theory, such as thermal duality,
the asymptotic high and low temperature limits, and the
Hagedorn transition by studying the 3-adic string model. It
is remarkable that this nonlocal quantum field theory is
able to reproduce the fundamental properties of the ther-
modynamics of string theories. As a cautionary remark, we
note that in our analysis we have not included contributions
which may arise from solitonic configurations whose ef-
fects may be important at high temperatures [26]. A rather
interesting feature of these theories is that the free theory is
trivial so that all of the thermal properties are generated by
interactions, even if the model is weakly coupled.
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