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It has recently been pointed out that particles falling freely from rest at infinity outside a Kerr black hole

can in principle collide with an arbitrarily high center of mass energy in the limiting case of maximal

black hole spin. Here we aim to elucidate the mechanism for this fascinating result, and to point out its

practical limitations, which imply that ultraenergetic collisions cannot occur near black holes in nature.
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Bañados, Silk, andWest (BSW) [1] recently showed that
particles falling freely from rest outside a Kerr black hole
can collide with an arbitrarily high center of mass energy in
the limiting case of maximal black hole spin. They pro-
posed that this might lead to signals from ultrahigh energy
collisions, for example of dark matter particles. In this
Letter we aim to elucidate the mechanism for this result,
and to point out its practical limitations given that extremal
black holes do not exist in nature. In particular, we clarify
why infinite collision energy can only be attained at the
horizon, and with a maximally spinning black hole. We
also show that the maximum center of mass energy grows
very slowly as the black hole spin approaches its maximal
value, so it will not be so high for astrophysical black
holes. Finally, we calculate the upper bound for the energy
of the ejecta of the collision and find that to be only slightly
above the mass of the particles, even in the extremal limit.
We use units with G ¼ c ¼ M ¼ 1, where M is the black
hole mass, and metric signature (þ���).

While one can theoretically extract 100% of the rest
energy of a mass by lowering it into a nonrotating black
hole, and one can extract even more energy using a Penrose
process lowering it into a rotating black hole, neither of
these possibilities suggests that just by falling in freely
from far away, a pair of particles can experience an infinite
collision energy in their center of mass frame. If this is
indeed possible then although the debris would be red-
shifted on the way out, it might still reveal features of the
S matrix at arbitrarily high energies. This is surprising
since one seems to get an infinite energy boost—despite
conservation of energy—from the finite process of falling
into the black hole. But this is a misconception, as we will
explain, since it takes in fact an infinite time to access the
infinite collision energy.

We restrict attention here to orbits in the equatorial plane
of a Kerr black hole with spin parameter a. Given the
energy E, angular momentum l, and the unit 4-velocity
condition, one can solve for the four velocity u at any given
(Boyer-Lindquist) radial coordinate r, up to a discrete
ambiguity in the sign of _r. Then one can compute the

squared center of mass energy for a pair of particles of
mass m,

E2
cm ¼ ðmu1 þmu2Þ2 ¼ 2m2ð1þ u1 � u2Þ; (1)

where the square and dot refer to the local Lorentz metric.
For the case that the particles begin at rest at infinity,
E ¼ m, this yields Eq (8) of Ref. [1],

ðEKerr
cm Þ2 ¼ 2m2

rðr2 � 2rþ a2Þ ½2a
2ð1þ rÞ � 2aðl2 þ l1Þ

� l2l1ð�2þ rÞ þ 2ð�1þ rÞr2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� l2Þ2 � l22rþ 2r2

q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða� l1Þ2 � l21rþ 2r2

q
�: (2)

The largest collision energy for such particles occurs
when they collide at the horizon, carrying the maximum
and minimum angular momenta that permit a fall all the
way to the horizon. (We have not proved this analytically,
but rather by numerical exploration.) These angular mo-
menta correspond to those at which the centrifugal barrier
drops just low enough so that there is no turning point for
the radial motion. The particles therefore fall on a trajec-
tory that spirals asymptotically into an unstable circular
orbit at some critical radius, taking a logarithmically di-
vergent proper time to do so. Another branch of the tra-
jectories begins at this orbit and spirals into the black hole.
It is this latter branch on which the maximum collision
energy occurs at the horizon.
The location of the critical radius can be found using the

effective potential for the radial motion with unit Killing
energy per unit mass in the equatorial plane. The proper
time derivative of the (Boyer-Lindquist) radial coordinate
of orbital motion satisfies

_r 2=2þ Veffðr; lÞ ¼ 0; (3)

where the effective potential is given in terms of the
angular momentum l per unit mass by [2]
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Veff ¼ � 1

r
þ l2

2r2
� ðl� aÞ2

r3
: (4)

The critical point we are looking for is defined by

Veff ¼ dVeff=dr ¼ 0; (5)

and is found to occur with angular momenta

l ¼ l� ¼ �2ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p Þ; (6)

and at radius

r ¼ r� ¼ 2� aþ 2
ffiffiffiffiffiffiffiffiffiffiffiffi
1� a

p
: (7)

In the nonspinning case this yields l� ¼ �4 and r� ¼ 4,
which lies well separated from the horizon. With these

values, (2) gives EKerr
cm ¼ 2

ffiffiffi
2

p
m, while at the horizon these

same angular momenta give EKerr
cm ¼ 2

ffiffiffi
5

p
m [3]. In the

maximally spinning case it yields l� ¼ 2; 2ð1þ ffiffiffi
2

p Þ, and
r� ¼ 1; ð3þ 2

ffiffiffi
2

p Þ. The horizon lies at rh ¼ ð1þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
Þ, so that in the extremal case a ¼ 1, the critical

radius rþ ¼ 1 coincides with the horizon.
In the maximally spinning case the corotating critical

orbit is thus asymptotically tangent to the horizon. Its
4-velocity therefore tends to the null direction gener-
ating the horizon, since any other direction in the hori-
zon is spacelike. In other words, the particle is moving
at the speed of light, so the center of mass energy with
any particle not on this horizon generator is infinite.
This makes clear why infinite collision energy can only
be attained at the horizon, and with a maximally spin-
ning black hole. Since the particle never crosses the
horizon, an infinite proper time passes for the particle
as it spirals asymptotically onto the horizon. The nature
of the divergence can be seen from the radial equa-

tion _r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�2VeffðrÞ
p

. At the critical orbit radius r�
the effective potential has a maximum and vanishes;
hence, nearby it is a negative quadratic function, Veff ¼
�r�3� ðr� r�Þ2 þ � � � . Therefore _r / ðr� r�Þ, so the
proper time diverges logarithmically as r� is approached.

As BSW pointed out, for a black hole with spin parame-
ter a less thanM there will be an upper bound to the energy.
What is somewhat surprising is how slowly the largest
collision energy grows as the maximally spinning case is
approached. We can estimate the maximal energy with the
help of Eq. (2). In terms of the small parameter � ¼ 1� a,
we find that the maximal collision energy per unit mass,
i.e., the relative gamma factor, is approximately

Emax
cm

m
� 4:06��1=4 þOð�1=4Þ: (8)

In particular, for � ¼ 0:1, 0.01, 0.001, 0.0001 the numerical
result is, respectively, 6.90, 12.5, 22.6, 40.5. For an astro-
physical black hole, accretion processes prohibit any spin

factor greater than a ¼ 0:998 as a theoretical upper limit
[4], and MHD simulations [5] suggest the smaller upper
limit of a & 0:95. These imply upper bounds of around 20
and 10, respectively, for the maximum collision gamma
factor. Hence it seems that, even neglecting the effects of
gravitational radiation [6], hyper-relativistic collision en-
ergies will not be realized in nature.
Note that the essential ingredient in the large collision

energy is that one of the particles has the maximum angular
momentum lþ. Above we indicated the result if the other
particle has the minimum angular momentum l� and the
collision occurs at the horizon. If instead the collision
occurs at rþ (the critical unstable corotating circular orbit)

the coefficient 4.06 of ��1=4 in the leading approximation is
replaced by 3.70. If the collision occurs at the horizon, but
the second particle has zero angular momentum, it is
replaced by 2.20. And if the collision occurs at rþ, and
the second particle has zero angular momentum, it is
replaced by 2.00. These examples illustrate that, if the
collision energy is to be much larger for a spinning black
hole than in the nonspinning case, the key is for one of the
particles to carry the maximum angular momentum that
can be captured. The angular momentum of the other
particle is not really constrained, nor is the location of
the collision, as long as it lies at or inside the critical ra-
dius rþ.
Finally, another point made by BSW is that although the

collision energy can be arbitrarily large in the extremal
limit, the energy of any collision products ejected to in-
finity will be redshifted. We can obtain an upper bound for
the ejecta energy from a collision at the horizon as follows.
In this limiting case one of the particles has a 4-momentum
vector k that is (asymptotically) tangent to the horizon
generator, while the other particle, has 4-momentum p.
In order not to fall into the black hole, the 4 momentum of
an ejecta particle must also be tangent to the horizon
generator, so is �k for some scalar �. (This is the marginal
case. To escape, a particle must start strictly outside the
horizon.) If the remaining reaction products have total
4-momentum p0, then

pþ k ¼ p0 þ �k; (9)

hence

p0 ¼ pþ ð1� �Þk: (10)

Now since p, p0, and k are all future pointing vectors, p0 �
p > 0 and k � p > 0, hence �� 1< p � p=k � p. If the
mass of each of the initial particles is m, we have

p � p
k � p ¼ m2

ðE2
cm=2�m2Þ : (11)

Thus the ejecta particle can have Killing energy at most
twice that of k, i.e., at most 2m. As the collision energy
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increases, this ejecta energy drops to something just
slightly above m.

To summarize, we have examined some practical limi-
tations of using black holes as particle accelerators, as
proposed in Ref. [1]. Infinite center of mass energies for
the colliding particles can only be attained when the black
hole is exactly extremal and only at infinite time and on the
horizon of the black hole. Additionally, the upper bound on
the collision energy for an astrophysically realistic black
hole is, neglecting radiation, less than 10 times the mass of
the particles. The energy of the ejecta of the collision is no
more than twice the particle rest mass. In conclusion,
intriguing as it may be in principle, the possibility of
spinning black holes catalyzing hyper-relativistic particle
collisions does not seem realizable in practice.

We thank M. Bañados, J. Silk, and S. West for helpful
discussions. This research was supported in part by the
NSF under Grant No. PHY-0903572, and by STFC.

Note added.—As the present manuscript was being com-
pleted, a Comment by Berti et al. [6] appeared which also
presents some of the points made here.

Note added in proof.—The possibility of ultrahigh en-
ergy collisions catalyzed by a rotating black hole was
noticed long ago, in the context of the study of collisional
Penrose processes [7,8]. The energy that can be extracted
at infinity was analyzed there as well.
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