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We show how classical and quantum dualities, as well as duality relations that appear only in a sector of

certain theories (emergent dualities), can be unveiled, and systematically established. Our method relies

on the use of morphisms of the bond algebra of a quantum Hamiltonian. Dualities are characterized as

unitary mappings implementing such morphisms, whose even powers become symmetries of the quantum

problem. Dual variables, which have been guessed in the past, can be derived in our formalism. We obtain

new self-dualities for four-dimensional Abelian gauge field theories.
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Introduction.—Dualities appear in nearly all disciplines
of physics and play a central role in statistical mechanics
and field theory [1,2]. When available, these mathematical
transformations provide an elegant, efficient way to obtain
information about models that need not be exactly solv-
able. Most notably, dualities may be used to determine
features of phase diagrams such as boundaries between
phases, and the exact location of some critical or multi-
critical points. Historically, dualities were introduced in
classical statistical mechanics by Kramers and Wannier
(KW) as a relation between the partition function of one
system at high temperature (or weak coupling) to the
partition function of another (dual) system at low tempera-
tures (or strong coupling). This relation allowed for a
determination of the exact critical temperature of the
two-dimensional Ising model on a square lattice [3], before
the exact solution of the model was available. Later on, it
was noticed that, due to the connection between quantum
theories in d space dimensions and classical statistical
systems in dþ 1 dimensions, dualities can provide rela-
tions between quantum theories in the strong coupling and
weak coupling regimes [1]. The current work is motivated
by a quest for a simple unifying framework for the detec-
tion and treatment of dualities.

We will describe an algebraic approach to dualities and
self-dualities for systems of arbitrary spatial dimensional-
ity d. We will show that quantum (self-)dualities (a con-
nection between Hamiltonians) become dualities of the
related classical statistical problem in dþ 1 dimensions.
Thus, quantum and classical (self-)dualities are intrinsi-
cally equivalent, yet it will become clear that quantum
(self-)dualities are -with the technique presented here-
much easier to detect and exploit. The gist of the method
is the characterization of quantum (self-)dualities as struc-
ture preserving mappings (homomorphisms) between op-
erator algebras which are Hamiltonian dependent. The
structure of quantum mechanics further requires that these
(self-)duality mappings should be unitarily implementable.
In contrast, generalized Jordan-Wigner transformations [4]

for example, are dictionaries connecting representations,
independent of the structure of any particular Hamiltonian.
Bond algebras and dualities.—Our main thesis is that

quantum dualities (self-dualities) are homomorphisms (au-
tomorphisms) of bond algebras [5] that preserve locality of
interactions and can be implemented through a unitary
map. Take a quantum Hamiltonian H, given as a sum of
quasilocal operators or bonds fhRg weighed by couplings
�R, H ¼ P

R�RhR. The index R can represent, for ex-
ample, lattice sites. The bond algebra of H, AH, is the
smallest operator algebra that contains every bond in H,
and thus H itself. It can be described as the algebra of all
linear combinations of products of bonds

Q
hR and the

identity operator. The core idea is that two HamiltoniansH
and Hdual are dual to each other if there is a unitarily
implementable homomorphism � between their bond al-
gebras mapping H to Hdual up to irrelevant terms in the

thermodynamic limit [6]. So we demand that �ðHÞ ¼
UDHUy

D ¼ Hdual þ VB where the boundary operator VB

is irrelevant [6]. If H and Hdual share the same bonds but
with different couplings, then the duality is nothing but a
self-duality, established through an automorphism of AH.
This scenario includes the very useful special case of two
exchanged couplings representing a weak coupling $
strong coupling exchange. To make clear that this approach
is physically sensible, it is enough to notice that such
homomorphisms preserve the Heisenberg equations of
motion. Notice that the labels fRg are completely arbitrary,
no reference is made to any particular geometry or dimen-
sionality. The primary algebraic objects are the bonds [5],
built out of elementary degrees of freedom such as spins. In
the past, quantum dualities such as KW were presented as
nonlocal mappings between elementary degrees of free-
dom. In contrast, duality morphisms are mappings local in
the bonds and, remarkably, provide means to derive those
nonlocal mappings (which shows that these self-duality
automorphisms are indeed the quantum version of the
classical order-disorder transformations of Kadanoff and
Ceva [7]). That all dualities are manifestations of bond
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algebraic morphisms is not obvious. If, however, as is the
standard case, two systems are dual to one another on
general subsets� of an infinite lattice then an exact duality
between the two systems exists if and only if the bond
algebras of the two systems are identical. The proof of this
assertion is straightforward. The proviso of general sub-
lattices implies that a unitary transformation giving rise to
the same spectrum may be applied for a general collection

of bonds R 2 � and their duals R0 2 �0: UDHUy
D ¼

UDð
P

R2��RhRÞUy
D ¼ P

R02�0�R0h0R0 ¼ Hdual. As this

holds for all �, it follows that UDhRU
y
D ¼ h0R0 for all R,

R0. If two sets of operators (including the bond operators
fhRg) are related by a unitary transformation UD then their
algebras are identical. Similarly, if two sets of operators
fhRg and fh0R0 g exhibit an identical algebra then there is a

unitary transformation UD relating them.
In general, self-dualities do not leave H invariant. They

are symmetries of the bond algebraAH, and this is the key
to detect them. However, they may become symmetries on
appropriate regions of parameter space. If, e.g., UD ex-
changes the couplings g and g0 in H then at the self-dual
point g ¼ g0, ½H;UD� ¼ 0 (up to the irrelevant terms [6]).
Moreover, if UD effects the exchange for any values of g
and g0, then for even n, ½Un

D;H� ¼ 0 (again, up to irrele-
vant terms). Taking n ¼ 2 we see that

self-duality ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Quantum Symmetry

p
:

Thus a self-duality could reveal nontrivial hidden symme-
tries of a problem. Of course, the symmetries Un

D, need not
be all independent or nontrivial (we will see examples
below). One can always add to H an irrelevant boundary
term V 0

B (related, but not equal to VB) derived from the
bond algebra, so that even for finite systems ½H þ
V 0
B; U

n
D� ¼ 0 exactly. Thus, it may be useful to work with

the more symmetric H þ V0
B.

As a basic illustration, take ~H½j; h� ¼ j
P

N�1
l¼1 �z

l�
z
lþ1 þ

h
P

N
l¼1 �

x
l þ j�z

N ¼ H½j; h� þ j�z
N , (j�

z
N ¼ V 0

B) (the ��
l

are Pauli matrices), where H½j; h� is the Hamiltonian of an
Ising chain in a transverse magnetic field (N spins). One
can check that �x

1 � �z
N , �z

N � �x
1, �x

i � �z
rðiÞ�

z
rðiÞþ1

(i ¼ 2; 3; � � � ; N), �z
i�

z
iþ1 � �x

rðiÞ (i ¼ 1; � � � ; N � 1),

with rðiÞ ¼ N þ 1� i, gives a unitarily implementable
automorphism � of the bond algebra of ~H. � is clearly a

self-duality for the Ising chain H½j; h�, UDH½j; h�Uy
D ¼

H½h; j� þ VB, with boundary term VB ¼ h�z
N � j�x

1, and

it is an exact self-duality for ~H, �ð ~H½j; h�Þ ¼
UD

~H½j; h�Uy
D ¼ ~H½h; j�. In this simple case, U2

D ¼ 1.
The standard approach [8] to this self-duality involves
defining nonlocal spin operators—the dual variables—but
nothing in principle determines their form; dual variables
have to be guessed. In contrast, in our formalism it is
natural to use the duality mapping to define dual variables

��
i as ��

i ¼ UD�
�
i U

y
D. Then the above relations lead to

�x
1 ¼ �z

N , �
x
i ¼ �z

rðiÞ�
z
rðiÞþ1, i ¼ 2; � � � ; N. On the other

hand, �z
i ¼ UD�

z
iU

y
D ¼ UD�

z
i�

z
iþ1 � � � ��z

N�1�
z
N �

�z
NU

y
D, so that, by the duality mapping above, it reduces

to �z
i ¼

QN
m¼i �

x
rðmÞ ¼

QNþ1�i
m¼1 �x

m. Similarly, the Jordan-

Wigner dictionary [4] gives rise to a bond algebra mapping
when applied to d ¼ 1 spin and spinless Fermi systems.
The explicit exchange statistics transformation can be
derived by solving for one set of bonds in terms of the
other. It can be shown that there is no Jordan-Wigner
transformation that relates two local Hamiltonians in di-
mensions d > 1: By examining the product of bonds
around closed loops an inconsistency is found if local
spinless Fermi bilinears could be mapped to local spin
terms and vice versa. In the following we disregard bound-
ary terms without further comments.
Dualities and self-dualities in quantum statistical me-

chanics.—The d ¼ 3 orbital compass (OC) model

HOC ¼ �X
~{

½JxSx~{ Sx~{þ ~e1
þ JyS

y
~{ S

y
~{þ ~e2

þ JzS
z
~{ S

z
~{þ ~e3

�

(S�~{ ¼ 1
2�

�
~{ ) has been proposed [9] to study orbital order-

ing in transition metal compounds. A still interesting yet
simplified scenario for orbital ordering is provided by the
planar OC model (POC)

HPOC½Jx; Jy� ¼ �X
~{

ðJx�x
~{ �

x
~{þ ~e1

þ Jy�
y
~{ �

y
~{þ ~e2

Þ (1)

Its bond algebra AHPOC
is generated by f�x

~{ �
x
~{þ ~e1

;

�y
~{ �

y
~{þ ~e2

g~{, and it is specified by a few relations: Each

bond (i) squares to one, (ii) anticommutes with the four
other bonds which share any of its vertices, and (iii) com-
mutes with all other bonds. The mapping �ð�x

~{ �
x
~{þ ~e1

Þ ¼
�y

~{þ ~e1
�y

~{þ ~e1þ ~e2
, �ð�y

~{ �
y
~{þ ~e2

Þ ¼ �x
~{þ ~e2

�x
~{þ ~e2þ ~e1

, preserves

every relation among bonds, showing a self-duality under
Jx $ Jy. The POC Hamiltonian is also dual [10] to the Xu-

Moore (XM) Hamiltonian [11]

HXM½j; h� ¼ �X
~{

ðjh�z
~{ þ h�x

~{ Þ; (2)

(with h�z
~{ ¼ �z

~{ �
z
~{þ ~e1

�z
~{þ ~e1þ ~e2

�z
~{þ ~e2

) which was intro-

duced as a simplified model for some aspects of quantum
phase transitions in pþ ip superconducting arrays. The
duality is established through the mapping of bonds
�ð�x

~{ �
x
~{þ ~e1

Þ ¼ h�z
~{ , �ð�y

~{ �
y
~{þ ~e2

Þ ¼ �x
~{þ ~e2

, which is in-

deed given by a unitary UD. Thus UDHPOC½Jx; Jy�Uy
D ¼

HXM½Jx; Jy�, and these two models must have the same

phase diagram. The quantum-(d)-to-classical-(dþ 1)
mapping is much easier for HXM than for HPOC, another
manifestation of the power of duality transformations and a
useful fact if one wants to perform, say, quantum
Monte Carlo simulations. The self-duality of the XM
Hamiltonian [11] can be deduced from the self-duality of
the POCmodel and the duality just described, or directly as
an automorphism of its bond algebra. Applied to the ele-
mentary degrees of freedom f�x

~{ ; �
z
~{ g, the automorphism

returns the nonlocal dual operators of [11].
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Classical from quantum dualities.—The standard
quantum-(d)-to-classical-(dþ 1) connection establishes
an equivalence between quantum (as unitary mappings)
and classical dualities. Take, for example, the XM
Hamiltonian HXM½j; h� of Eq. (2). Its classical rendition

is ð 12 sinhð2J�ÞÞ�=2Z½J; K�, with Z½J; K� �P
½��e

P
~{;t
ðJh�z

~{
ðtÞþK�~{;t�~{;tþ1Þ, J ¼ j ��

Nt
, J� ¼ h ��

Nt
, and K ¼

� 1
2 ln tanhðh ��

Nt
Þ. The length along the time axis Nt � 1.

Similarly, HXM½h; j� maps to ð 12 sinhð2J�ÞÞ�=2Z½J�; K��,
with K� ¼ � 1

2 ln tanhðj ��
Nt
Þ. It follows already that

sinh2J sinh2K� ¼ 1 ¼ sinh2J� sinh2K, yet nothing in
principle guarantees any relation between Z½J; K� and
Z½J�; K�� so far. Now, due to the quantum self-duality

HXM½j; h� ¼ UDHXM½h; j�Uy
D, we have that

Tr expð���HXM½j; h�Þ ¼ Tr expð���HXM½h; j�Þ. Hence
Z½J;K�

ð12 sinhð2JÞÞ�=2 ¼ Z½J�;K��
ð12 sinhð2J�ÞÞ�=2 , which is indeed the classical

self-duality obtained in [11] by considerably more labori-
ous classical methods.

Emergent dualities.—A (self-)duality can emerge in a
sector of a theory (e.g., for particular subsets of couplings,
or low energy subspace). The projection of a bond algebra
onto a sector of the full Hilbert space generates a new bond
algebra that may have (self-)dualities not present in the full
model. An example is provided by the quantum dimer
model (QDM) [12] defined on the orthonormal set of dense
dimer coverings of a lattice. The QDM Hamiltonian reads

(3)

with the sum performed over all elementary plaquettes.
The QDM contains both a kinetic (t) term that flips one
dimer tiling of any plaquette to another (a horizontal cover-
ing to a vertical one and vice versa), and a potential (v)
term. At the (so-called) RK point t ¼ v [12], the ground
states are equal amplitude superpositions of dimer cover-
ings. If Pg is the projection operator onto the ground state

sector, then

with xh ¼ 0 or 1 on the particular plaquette h, where
flips the dimer in the pla-

quette h. At the RK point, the projected Hamiltonian
becomes PgHQDM;Pg ¼ 0. Since both the kinetic (t) and
potential (v) terms are given by xhPg within the ground
state sector, the kinetic and potential operators can be
interchanged without affecting the bond algebra. This
self-duality emerges exclusively in the ground state sector
of the QDM at the RK point.

Dualities in quantum field theory (QFT).—An elemen-
tary application of our technique is provided by a free
massless scalar field in 1þ 1 dimensions [2], with

Hamiltonian H ¼ 1
2

R
dx½�2ðx; tÞ þ ð@�ðx;tÞ

@x Þ2�, and

½�ðx; tÞ; �ðx0; tÞ� ¼ i�ðx� x0Þ. (With obvious modifica-
tions, this Hamiltonian describes a taut string.) To study
this model’s bond algebra, it is convenient to discretize it,
with lattice spacing a, i.e., a

2

P
i½�2

i þ ð�iþ1 ��iÞ2=a2�.
The automorphism �i � �ð�iþ1 ��iÞ=a, ð�iþ1 �
�iÞ=a � �iþ1 preserves the canonical commutation
relations. The dual variables provide a convenient way to
study this self-duality in the continuum. Their discrete

form is ~�i ¼ a
P1

m¼iþ1 �m, ~�i ¼ �ð�iþ1 ��iÞ=a. Now
we can let a go to zero to obtain dual variables in the con-

tinuum: ~�ðx; tÞ ¼ UD�ðx; tÞUy
D ¼ � @�

@x ðx; tÞ, ~�ðx; tÞ ¼
UD�ðx; tÞUy

D ¼ R1
x dy�ðy; tÞ. These are toy examples of

solitonic variables. In general, self-dualities can be de-
stroyed by coupling the system to sources, but this is not
necessarily the case. Consider the scalar field now coupled

to external classical sources A, E: HA;E ¼ R
dx½12 �

ð�� �AÞ2 þ 1
2 ð@�@xÞ2 � �E��. The self-duality maps HA;E

to

H
~A; ~E¼

Z
dx

�
1

2
ð��� ~AÞ2þ1

2

�
@�

@x

�
2�� ~E�þcnumber

�
:

The self-duality survives this coupling to external sources,

with ~Aðx; tÞ ¼ R
x
�1 dwEðw; tÞ, ~Eðx; tÞ ¼ @A

@x ðx; tÞ.
Next we consider ZN gauge field theories (GFTs) de-

fined on a Euclidean (3þ 1)-dimensional lattice. The in-
terest in these theories grew out of ’t Hooft studies on
quark (charge) confinement in pure SUðNÞ gauge theories
[13], that suggest that their most important degrees of
freedom near a confinement-deconfinement phase transi-
tion are the field configurations taking values in the center
subgroup of SUðNÞ, ZN . To explore this scenario, several
author considered Wilson’s action for Euclidean lattice
GFTs [14], S ¼ � 1

g2
ðPhReTrðUi;jUj;kUk;lUl;i � 1ÞÞ, re-

stricting the fields to take values in ZN . This is the model
we are going to study; thus, Ui;j stands for an Nth root of

unity attached to the oriented link with endpoints i, j, and
Ui;j ¼ U�

j;i. In the axial gauge the action simplifies

S ¼ � 1

2g2
X
n

X3
i¼1

½cosð	inþe4
� 	inÞ þ cosð�i

nÞ�;

(�1
n ¼ 	3nþe2

� 	3n � 	2nþe3
þ 	2n, and cyclic permutations

thereoff). The goal is to learn about duality properties of
amplitudes in QFTs, as given by a path integral over field
configurations. Computation of a vacuum to vacuum am-
plitude h0outj0ini amounts to evaluating a partition func-
tion. Thus we can apply the bond algebra technique to look
for self-dualities in QFTs that are more conveniently quan-
tized through path integrals. To proceed, we need to com-
pute the quantum Hamiltonian equivalent to the gauge
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fixed action given above. This is a difficult task for arbi-
trary N, but the computations were done (in a different
context) in [15]. Using these (the couplingK depends onN
and g [16])

H ¼ �X
n

X3
i¼1

½KVi
n þ 1

4g2
�	in� þ H:c:;

where �	3n ¼ U1
nU

2
nþe1

U1y
nþe2

U2y
n , and cyclic permuta-

tions. There are now N � N unitary matrices U, V on
each link ðn; eiÞ; i ¼ 1; 2; 3 of a cubic lattice, (Ui

n, Vi
n

denote matrices on the link (n, ei)). The Us and Vs satisy

ðUi
nÞN ¼ ðVi

nÞN ¼ 1, Vi
nU

i
n ¼ !Ui

nV
i
n (! ¼ e2�i=N), i.e.,

Weyl’s group relations, and matrices on different links
commute. ZN GFTs have been known for many years to
be self-dual for N ¼ 2, 3, 4, and it was conjectured that
they are no longer self-dual for N � 5 [14]. We can prove
that these theories remain self-dual for all N, as the map-
ping of bonds

V1
n � �	1n; �	1n � V1y

n�e1þe2þe3

V2
n � �	2n�e1þe2

; �	2n � V2y
nþe3

V3
n � �	3n�e1þe3

; �	3n � V3y
nþe2

(4)

shows. U2
D is a new discrete symmetry of this problem, but

U4
D ¼ 1 up to a lattice translation. For large N, these gauge

theories are known to display three phases, two of them
connected through a confinement-deconfinement phase
transition [17]. The self-duality fixes the self-dual coupling
g� at 4g�2K� ¼ 1 [16], which gives the exact self-dual
coupling for every N (so far only known analytically for
N ¼ 2, 3, 4). On the other hand, it is shown in [15] (using
our approach) that the isotropic dþ 1 ¼ 1þ 1 N-state
vector Potts model has a self-dual point at coupling J�
given by precisely an equivalent relation 2K� ¼ J�. Thus
our results explain the puzzling fact [14] that the isotropic
classical dþ 1 ¼ 1þ 1N-state vector Potts model and the
dþ 1 ¼ 3þ 1 ZN GFT share identical self-dual relation:
first, both bond algebras (though nonisomorphic) are based
on the Weyl algebra, and admit self-duality mappings; and
second, both models have quantum couplings satisfying
the equation in [16]. The compactness of degrees of free-
dom (i.e., angular variables), is required for a phase tran-
sitions to occur. On one hand, Polyakov [18] showed that
compact QED displays no phase transitions in 2þ 1 di-
mensions. On the other, we can show that in the limitsN !
1, a ! 0, (4) reduces to the well-known self-duality of
vacuum QED in 3þ 1 dimensions E � B, B � �E,
which has no phase transitions. We argue that since the
self-duality emerges only in 3þ 1 dimensions, it is im-
portant in triggering the phase transitions of these GFTs.
So, the presence of both compactness and self-duality is
crucial for the existence of a confinement-deconfinement
phase transition.

In summary, we developed a unifying and systematic
framework for dualities, providing a new perspective to
unveil them: (self-)dualities (exact or emergent) can be
investigated as homomorphisms of bond algebras. The

power of this algebraic approach was exploited to obtain
new self-dualities of confining Abelian GFTs in 3þ 1
dimensions, a new discrete symmetry of these theories,
and their self-dual couplings analytically. We prove that
the puzzling connections between these GFTs and some
confining theories in 1þ 1 dimensions (vector Potts
model) result from these two models having similar alge-
braic structures and self-dualities. Self-dualities are more
easily discovered as automorphisms of bond algebras
(quantum) than as relations between partition functions
(classical). Furthermore, they can generate otherwise hid-
den symmetries. Known classical dualities derived in the
literature by Fourier transformation [19] can be obtained
by our technique. Thus this work hints at a deep connection
between operator algebra homomorphisms and the Fourier
transform to be at the root of the equivalence between
classical and quantum dualities. Our approach to (self-)
dualities is applicable to any system (see supplementary
material [20]), and clears the way for the development of
approximation schemes that preserve these peculiar
symmetries.
E. C. thanks V. Lunts for helpful discussions.
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