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We identify the optimal measurement for obtaining information about the original quantum state after

the state to be measured has undergone partial decoherence due to noise. We quantify the information that

can be obtained by the measurement in terms of the Fisher information and find its value for the optimal

measurement. We apply our results to a quantum control scheme based on a spin-boson model.
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The most serious obstacle against realizing quantum
computers and networks is decoherence that acts as a noise
and causes information loss. Decoherence occurs when a
quantum system interacts with its environment, and it is
unavoidable in almost all quantum systems. Therefore, one
of the central problems in quantum information science
concerns the optimal measurement to retrieve information
about the original quantum state from the decohered one
and the maximum information that can be obtained from
the measurement.

In this Letter, we identify an optimal quantum measure-
ment that retrieves the maximum information about the
expectation value of an observable of �̂ from the partially
decohered state. Here, �̂ is an unknown quantum state and
modeling of the noise is assumed to be given. The infor-
mation content that we use is the Fisher information [1,2],
which has been widely used in estimation theory and is
related to the precision of the estimation. For cases in
which the unknown quantum state can be described by a
single parameter, an optimal procedure to estimate this
parameter has already been found [2] and used for phase
estimation [3]. In general, a quantum state is described by
multiple parameters. The optimal estimation procedures
for the multiparameter case have been discussed in several
models of quantum systems [4] and these are deeply con-
nected with the uncertainty relations of noncommutable
operators [5]. The main result of the present study is to
identify the optimal measurement for a noisy quantum
system (see also [6]). Here, by optimal, we imply that the
Fisher information obtained by the measurement is maxi-
mal and that the precision of the estimation from the
measurement outcomes is also maximal. While the aim
of quantum error correction [7] is to protect the unknown
quantum state from interacting with the environment, our
aim is to extract maximum information from the noisy
quantum system.

The crucial observation for obtaining our results is that
the quantum state, observables, and quantum measure-
ments are all described by a common set of generators of
the Lie algebra. This fact greatly facilitates the analysis
carried out in the present study. The Fisher information

describes the precision of the parameter estimation and it is
defined through the parameterization of quantum states.
We use a generalized Bloch vector [8] as the parameter.
Any quantum state of a finite N-dimensional quantum

system is expressed in terms of generators �̂ ¼ f�̂igN2�1
i¼1

of the Lie algebra suðNÞ. Let the generalized Bloch vector
� 2 RN2�1 be defined as the coefficient vector of the

expansion of �̂ by �̂:

�̂ ¼ 1

N
Î þ 1

2
� � �̂; (1)

where Î is the identity operator. Since �̂ is unknown, � is

also unknown. The generators �̂ satisfy �̂y
i ¼ �̂i, Tr�̂i ¼

0, and Tr½�̂i�̂j� ¼ 2�ij, and each �̂ is characterized by the

structure constants fijk (completely antisymmetric tensor)

and gijk (completely symmetric tensor) as ½�̂i; �̂j� ¼
2i
P

kfijk�̂k, f�̂i; �̂jg ¼ 4
N �ijÎ þ 2

P
kgijk�̂k, where ½� � ��

and f� � �g denote the commutator and the anticommutator,
respectively.
The quantum noise in a finite-dimensional quantum

system can be described as an affine map E [9], Eð�̂Þ �P
iM̂i�̂M̂

y
i , where fM̂ig are the Kraus operators that satisfyP

iM̂
y
i M̂i ¼ Î. The Bloch vector � is also affine-mapped

by E. By assuming that the dimension of the decohered
state Eð�̂Þ is the same as that of �̂,

E ð�̂Þ ¼ 1

N
Î þ 1

2
ðA� þ cÞ � �̂; (2)

where A is an ðN2 � 1Þ � ðN2 � 1Þ real matrix whose ij

element is 1
2 Tr½�̂iEð�̂jÞ� and c 2 RN2�1 whose ith element

is 1
N Tr½�̂iEðÎÞ�. We assume that E is injective [10]; then, A

has an inverse, which physically implies that Eð�̂Þ is a
partially (not completely) decohered state. The observable

X̂ can also be expanded by �̂ as X̂ ¼ x0Î þ x � �̂, where
x0 2 R and x 2 RN2�1. Then, the expectation value of X̂ is

calculated to be hX̂i ¼ x0 þ x � �. Therefore, estimating

hX̂i is equivalent to estimating x � �, and our problem
reduces to finding the measurement that maximizes the
Fisher information about x � �.
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We next introduce the Fisher information. Given nð� 1Þ
independent and identically-distributed (i.i.d.) quantum
states Eð�̂Þ, we perform the same POVM (positive operator

valued measure) measurement E ¼ fÊigi on each of them.
The probability distribution of measurement outcomes is

given by pi ¼ Tr½Eð�̂ÞÊi�. In terms of pi, the Fisher infor-

mation about hX̂i obtained by E is defined as [11]

Jðx;EÞ � ½x � JðEÞ�1x��1; (3)

where JðEÞ is an ðN2 � 1Þ � ðN2 � 1Þ symmetric matrix
called the Fisher information matrix, whose ij element is

defined as ½JðEÞ�ij � P
k

1
pk

@pk

@�i

@pk

@�j
. Since JðEÞ has some

zero eigenvalues, the inverse is defined on the support of
JðEÞ, which we denote as supp½JðEÞ�, and Jðx;EÞ is
defined as zero if x =2 supp½JðEÞ�.

The Fisher information characterizes the precision of the
estimation. The precision of the estimated value (estima-

tor) X� of the unknown hX̂i can be measured by the
variance of X�. If the estimator X� satisfies the unbiased-
ness condition, that is, if the expectation value of X� for all
possible outcomes equals hX̂i, the variance VarðX�Þ satis-
fies the Cramer-Rao inequality: nVarðX�Þ � ½Jðx;EÞ��1,
where n is the number of the samples that we measure. In
general, the equality of the Cramer-Rao inequality is
asymptotically satisfied for any POVM E by adopting
the maximal-likelihood estimator as X�. Then, the estima-
tion can be carried out most precisely with the measure-
ment that maximizes Jðx;EÞ.

The primary finding of our study is that the optimal
measurement for obtaining the Fisher information about

hX̂i is the projection measurement PŶ corresponding to the

spectral decomposition of an observable Ŷ that is the
solution to the operator equation

E yðŶÞ ¼ X̂; (4)

where EyðŶÞ � P
iM̂

y
i ŶM̂i is the adjoint map of E. Since

Tr½Eð�̂ÞŶ� ¼ Tr½�̂EyðŶÞ�, the observable Ŷ � y0Î þ y � �̂
is adjoint mapped as EyðŶÞ ¼ ðy0 þ y � cÞÎ þ ðATyÞ � �̂,
where T denotes the transpose. Because we assume that

A has an inverse, the solution to (4) is obtained as Ŷ ¼
fx0 � ½ðATÞ�1x� � cg þ ½ðATÞ�1x� � �̂. Although the Fisher
information depends on the unknown quantum state �̂ [12],

the observable Ŷ is independent of �̂. Therefore, PŶ is also
independent of �̂, and the optimal procedure to estimate

hX̂i is simply performing PŶ to the noisy system. We also

find that the maximum Fisher information about hX̂i is
given by

Jðx;PŶÞ ¼ ð�ŶÞ�2 � fTr½Eð�̂ÞŶ2� � Tr½Eð�̂ÞŶ�2g�1:

(5)

We can also use quantum state estimation strategies [13] to

estimate hX̂i. However, these strategies provide unneces-
sary pieces of information about the system at the expense

of decreasing the precision of the estimation of hX̂i.
Therefore, to estimate the expectation value of a single

observable hX̂i, performing PŶ is the best strategy.
To prove these results, we first show that the Fisher

information about hX̂i obtained by the projection measure-

ment of Ŷ is expressed as (5). Let P be a projection

measurement. Because the elements of P ¼ fP̂igNi¼1 are

Hermitian operators, they are expanded in terms of �̂ as

P̂i ¼ 1
N Î þ vi � �̂, where vi 2 RN2�1. For the complete-

ness of the measurement, vi must satisfy
P

N
i¼1 vi ¼ 0.

When we measure Eð�̂Þwith P, the probability distribution
of the outcomes is given by pi ¼ 1

N þ vi � ðA� þ cÞ. Then,
the Fisher information matrix JðPÞ is calculated to be
JðPÞ ¼ ATKA, where K � P

N
i¼1 p

�1
i viv

T
i . To calculate

the Fisher information about hX̂i, we need to find the
inverse of K. The support of K is the space spanned by
fvigNi¼1. The inverse of K for suppðKÞ is given by K�1 ¼
ðVTÞ�1QV�1, where V is an ðN2 � 1Þ � N matrix whose
ith column vector is vi, and Q is an N � N symmetric
matrix whose ij element is �ijpi � pipj. Because V is not

a square matrix, we denote V�1 as the generalized inverse
matrix of V. If we express the singular value decomposi-
tion of V as V ¼ P

isi� i�
T
i , the generalized inverse V�1 is

defined as V�1 � P
is

�1
i �i�

T
i . We therefore obtain

Jðx;PÞ ¼ ½x � A�1K�1ðATÞ�1x��1

¼ ½y � ðVTÞ�1QV�1y��1; (6)

for y � ðATÞ�1x 2 suppðKÞ, and Jðx;PÞ ¼ 0 for y =2
suppðKÞ. The condition y 2 suppðKÞ is equivalent to the
condition that P is the projection measurement PŶ that
corresponds to the spectral decomposition of an observable

Ŷ � y � �̂. By denoting the spectral decomposition of Ŷ as

Ŷ ¼ PN
i¼1 �iP̂i, it follows from the definition of V and the

completeness conditions of P that the ith eigenvalue �i is
equal to the ith element of V�1y 2 RN . Therefore, the
Fisher information obtained from PŶ can be calculated to

be the inverse of the variance of Ŷ on Eð�̂Þ:

Jðx;PŶÞ ¼
�XN
i¼1

�2
i pi �

�XN
i¼1

�ipi

�
2
��1 ¼ ð�ŶÞ�2: (7)

We next show that (7) gives the maximal Fisher infor-
mation. To show this, we use the quantum Fisher informa-
tion [14] and the quantum Cramer-Rao inequality [15]. The
quantum Fisher information matrix JQ is independent of
measurements, depends only on the measured quantum
state Eð�̂Þ, and gives an upper bound on the classical
Fisher information matrix via the quantum Cramer-Rao
inequality:

JðEÞ 	 JQ; for all E: (8)

Therefore, the classical Fisher information Jðx;EÞ is
bounded from above as
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Jðx;EÞ 	 JQðxÞ; for all E and x; (9)

where JQðxÞ � ½x � ðJQÞ�1x��1 is the quantum Fisher in-

formation about hX̂i. Among several types of quantum
Fisher information matrices that satisfy (8), we adopt the
symmetric logarithmic derivative (SLD) Fisher informa-
tion matrix, which gives the tightest bound [16] on (8),

whose ij element is defined as ½JQ�ij � Tr½@Eð�̂Þ@�i
L̂j�, where

L̂i is a Hermitian operator called the SLD operator.
The SLD operator is given as the solution to @

@�i
Eð�̂Þ ¼

1
2 fEð�̂Þ; L̂ig. Expanding the SLD operator as L̂i ¼ aiÎ þ
bi � �̂, from (2), we obtain bi ¼ ½2N I þGEð�Þ �
Eð�ÞEð�ÞT��1Aei and ai ¼ �bi � Eð�Þ, where ei is a unit
vector whose ith element is 1, Eð�Þ � A� þ c, andGEð�Þ is
a matrix whose ij element is

P
kgijkEð�Þk. From the defi-

nition of the SLD Fisher information matrix, its ij element
is calculated to be ðAeiÞ � bj. We thus obtain JQ ¼
AT½2N IþGEð�Þ � Eð�ÞEð�ÞT��1A. Since we assume that

A has an inverse, the SLD Fisher information about hX̂i is

JQðxÞ ¼
�
x � A�1

�
2

N
IþGEð�Þ � Eð�ÞEð�ÞT

�
ðATÞ�1x

��1

¼ fTr½Eð�̂ÞŶ2� � Tr½Eð�̂ÞŶ�2g�1: (10)

Then, it follows from (7) that the projection measurement

PŶ of Ŷ ¼ y � �̂ satisfies the equality of (9) and that PŶ is
the optimal measurement for obtaining the Fisher informa-

tion about hX̂i from Eð�̂Þ.
Since �Ŷ and PŶ are invariant under transformation

Ŷ ! y0Î þ Ŷ for any y0 2 R, we can choose the observ-

able Ŷ so as to satisfy EyðŶÞ ¼ X̂. Therefore, to estimate

hX̂i from the decohered state Eð�̂Þ, the optimal method is to

perform the projection measurement PŶ of Ŷ that satisfies

the operator equation EyðŶÞ ¼ X̂.
As an illustrative application of our results, let us con-

sider a situation in which a single qubit interacts with a heat

bath of bosons [17]. The total Hamiltonian Ĥ0 is

Ĥ 0 ¼ @!0

�̂z

2
þX

k

@!kb̂
y
k b̂k þ

X
k

@�̂zðgkb̂yk þ g�kb̂kÞ;

where b̂k (b̂
y
k ) is the bosonic annihilation (creation) opera-

tor of the heat bath. We assume that the state of the qubit
and the bath is separable at t ¼ 0 and that the initial state of
the qubit is �̂ and that of the bath obeys the canonical
distribution. The state of the qubit at t is calculated in the
interaction picture to be

E ð�̂; tÞ ¼ 1

2
ð1þ e��0ðtÞÞ�̂þ 1

2
ð1� e��0ðtÞÞ�̂z�̂�̂z; (11)

where �0ðtÞ increases monotonically from zero at t ¼ 0:

�0ðtÞ � 4
R1
0 d!Dð!Þ 1�cos!t

!2 cothð�@!2 Þ. Here, Dð!Þ is the
spectral density function of the bath that we assume to take

the formDð!Þ ¼ 1
4!e�!=!c , where!c is the Debye cutoff

frequency. Then, AðtÞ and cðtÞ of this quantum operation

(11) are found to be AðtÞ ¼ diagðe��0ðtÞ; e��0ðtÞ; 1Þ and
cðtÞ ¼ 0. Therefore, AðtÞ has an inverse for t <þ1. At
t ¼ þ1, the right singular vector corresponding to the
nonzero singular value of AðtÞ becomes ð0; 0; 1ÞT ; then,
the Fisher information about all but �̂z vanishes. If we

substitute X̂ ¼ sin�obs�̂x þ cos�obs�̂z, then the solution to

(4) is ŶðtÞ ¼ e�0ðtÞ sin�obs�̂x þ cos�obs�̂z, so that the opti-
mal measurement for Eð�̂; tÞ is the projection measurement

P̂
ðtÞ ¼ 1
2 Î
 1

2 ½sin�ðtÞ�̂x þ cos�ðtÞ�̂z�, where �ðtÞ satis-
fies tan�ðtÞ ¼ e�0ðtÞ tan�obs. Thus, the measurement direc-
tion tilts toward the x direction and eventually converges to
the x direction, as shown in Fig. 1(a). Moreover, the

information about X̂ except for �obs ¼ 0 converges to
zero; therefore, we cannot estimate any observable except
for �̂z at t ¼ þ1 [see dashed curves on Fig. 1(b)].
In the above example, the qubit is decohered and the

information about the system decreases monotonically
because of the effect of the noise caused by the interaction
with the heat bath. It is known that the decoherence for the
spin is suppressed by the spin echo technique by applying a
sequence of pulses [17,18]. In this case, however, AðtÞ is
not diagonal, and the measurement direction is drastically

FIG. 1 (color). (a) Time evolution of �ðtÞ without pulse irra-
diation for kBT ¼ 10@!c. (b) Time evolution of the maximum
Fisher information J about X̂ with �obs ¼ 0:25� for �̂ ¼ 1

2 Î,

�t ¼ 0:3!�1
c , and 	 ¼ 0:05�t. The red (blue) solid curves show

the high (low) temperature case with kBT ¼ 10@!c (kBT ¼
@!c) with the sequence of pulses, and the dashed curves show
the case without pulses. (c) and (d) Time evolutions of �ðtÞ and

ðtÞ of the optimal measurement when the sequence of pulses is
applied, where kBT ¼ 10@!c, �t ¼ 0:3!�1

c , and 	 ¼ 0:05�t. In
(d), the time scale of pulse irradiation is magnified for clarity.
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changed. We consider the case in which the total

Hamiltonian is Ĥ ¼ Ĥ0 þ ĤrfðtÞ, where ĤrfðtÞ describes
the effect of the pulse irradiations [17]: ĤrfðtÞ ¼P

kV
ðkÞðtÞfcos½!0ðt� tðkÞp Þ��̂x þ sin½!0ðt� tðkÞp Þ��̂yg with

tðkÞp ¼ k�tþ ðk� 1Þ	 and VðkÞðtÞ ¼ V for tðkÞp 	 t 	 tðkÞp þ
	 � tk and 0 otherwise. Each pulse is applied from tðkÞp to
tk, and the time interval to the next pulse is �t. Here,
amplitude V and duration 	 are tuned to satisfy V	

@
¼ �

2 .

Figures 1(c) and 1(d) show the change in the measurement
direction nðtÞ ¼ ½sin�ðtÞ cos
ðtÞ; sin�ðtÞ sin
ðtÞ; cos�ðtÞ�
of the optimal measurement P
ðtÞ ¼ 1

2 ½Î 
 nðtÞ � �̂� for
obtaining the information about X̂. The solid curves in
Fig. 1(b) show the maximum Fisher information about an
observable. By applying the sequence of pulses, most of
the lost information is recovered; thus, the decoherence is
suppressed.

Here, we compare our optimal method with the quantum
state tomography strategy [19]. For the example described
above, the Fisher information obtained by our optimal
measurement is 3 times larger than that obtained by the
measurement proposed in [19]. This is because the quan-
tum state tomography strategy divides a given set of
samples for use to determine three noncommutable observ-
ables, whereas our strategy uses all of them to determine a
single observable.

In conclusion, we identified an optimal method for

estimating the expectation value hX̂i from a noisy quantum
system. The optimal measurement that maximizes the
Fisher information is the projection measurement PŶ cor-

responding to the spectral decomposition of Ŷ that satisfies

EyðŶÞ ¼ X̂. We also find that the maximum Fisher infor-
mation obtained by the measurement is given by the in-

verse of the variance of Ŷ for the decohered state. Although
the Fisher information depends on the unknown quantum
state, the optimal measurement that maximizes the Fisher
information is independent of the unknown quantum state.

Therefore, the optimal strategy for estimating hX̂i is to
perform PŶ on the noisy quantum system. Our results are
obtained under the assumptions that the quantum noise E is
injective and that the Hilbert space of the original state �̂
and the decohered state Eð�̂Þ have the same dimension. The
noninjectiveness of E corresponds to the case in which the
quantum state is completely decohered by the noise, for
example, at t ¼ þ1 in the previous example. When quan-
tum states are transferred by or stored on other media, we
can envisage situations in which the dimensions of the
Hilbert space of �̂ and Eð�̂Þ are not equal. Therefore,
solving the problem in such situations is crucial for im-
plementing quantum networks and memory. The full in-
vestigation of this study will be reported elsewhere.
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