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3Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia

(Received 10 July 2009; revised manuscript received 23 October 2009; published 4 January 2010)

In our numerical study based on a phenomenological description of strongly confined liquid crystalline

blue phase I (BP I), we find several novel structures characterized by specific configurations of topological

disclination lines. The thickness of the system is of the order of the dimension of the unit cell of the bulk

BP I, and the confining surfaces adopts homeotropic anchoring. The structures include an array of double-

helix disclination lines accompanied by an orthorhombic lattice of double-twist cylinders, and two parallel

arrays of winding disclination lines almost perpendicular to each other.
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Topological defects [1,2], associated with broken con-
tinuous symmetry, have long been an important subject of
physics, not only in different areas of condensed matter [3],
but also in cosmology [4]. Topological defects are univer-
sal in the sense that their properties are determined solely
by the symmetry of the order parameter space and dimen-
sionality of the system; they do not depend on atomistic
details. Liquid crystals have thus served as an ideal model
system exhibiting wide variety of topological defects, and
allowing direct optical observations of those defects [5].
One intriguing example can be found in cubic blue phases
[6] of a nematic liquid crystal (NLC) with strong chirality,
in which disclination lines of strength �1=2 embedded in
between so-called double-twist cylinders [6] form a regular
network with cubic symmetry. Blue phases have been
regaining greater attention because materials with ex-
tended stability range have been discovered [7,8] and, in
particular, they have been shown to be applicable to a
display with a very fast response [9]. Blue phases have
been attracting broader interest also because double-twist
cylinders are a typical example of topological excitations
called skyrmions. Skyrmions have been known in the con-
text of nuclear physics [10], and exist in a wide variety of
physical systems, such as spinor Bose-Einstein conden-
sates [11] and two-dimensional electron systems [12].
Similarities between those systems and blue phases can
thus be naturally expected. Indeed, a possibility of struc-
tures analogous to blue phases in chiral ferromagnets such
as MnSi has been theoretically argued [13–15].

The effect of confining surfaces on the stability of
defects is crucial for structures in actual liquid-crystalline
systems, which are in some sense confined in most cases.
In the case of an achiral NLC, well-known examples
include the stability of point defects at the liquid-crystal–
air interface [16], and various defect structures, for in-
stance, boojums, hedgehogs, and line disclinations, found
in NLC droplets [17]. However, in the case of an NLC with

chirality, main attention has been paid to the textures of a
cholesteric phase (helical alignment with no disclinations)
in droplets [18,19], or in contact with confining glass
plates, say, focal conics, Grandjean textures, and finger-
print textures [5]. The interplay between confinement and
disclinations associated with strong chirality has never
been studied. In this Letter we carry out a numerical study
to investigate the effect of strong confinement on the
structure of a blue phase and report a discovery of several
stable defect structures which, to our knowledge, have
never been observed in experiments, nor discussed
theoretically.
The numerical procedures to obtain stable (in some

cases metastable) structures of a highly chiral NLC is
almost the same as those employed in our previous study
[20]. Here we present the essential part needed for the
present calculation and the difference from our previous
study. We employ the rescaling of the order parameter of a
second-rank tensor ���, length, and the material parame-

ters described in Ref. [6]. The rescaled pitch of a uniaxial
cholesteric helix becomes 4�. The bulk free energy density

is composed of two parts; one is the local part ’localf�g ¼
�Tr�2 � ffiffiffi

6
p

Tr�3 þ ðTr�2Þ2, with Tr�2 denoting the trace
of a tensor �2, and the other takes care of the spatial
variation of ���: ’gradf�;rg ¼ �2f½ðr � �Þ�� þ
����2 þ �½ðr � �Þ��2g. The relevant rescaled parameters

are the temperature �, the chirality � and � that character-
izes the anisotropy of liquid-crystal elasticity. Throughout
this study, we set � ¼ �1, � ¼ 0:7, and � ¼ 1 (so-called
one-constant approximation). We have checked [20] that,
with these parameters, a cubic structure withO�

8 symmetry

referred to as blue phase I (BP I) becomes the most stable
state.
We assume homeotropic anchoring at the confining

surfaces. The surfaces whose normal is along the z direc-
tion are located at z ¼ 0 and z ¼ d, and the surface free
energies per unit area are denoted by ’s0 and ’sd, respec-
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tively. We also assume that the anchoring strengths of two
surfaces are equal, and adopt the form [21] ’s0f�g ¼
’sdf�g ¼ 1

2wTrð�� �sÞ2, with �s�� ¼ S0ð���� �
ð1=3Þ	��Þ, where � is the unit vector along the surface

normal (or the z direction). We choose S0 ¼ 1:44 so that
�s�� minimizes ’localf�g. We notice that the parameter w

characterizes the anchoring strength, and the extrapolation
length 
 for � ¼ 0:7 is approximately given by 
 ’ 1=w.
In our calculations, we choose w ¼ 0:1 (
 ’ 10), 0.5 (
 ’
2), and 2.5 (
 ’ 0:4). Note that as mentioned below, we
will consider the cases with system thickness 9 � d � 18.
Therefore the choices of w ¼ 0:1, 0.5, and 2.5 can be
classified as weak, intermediate, and strong anchoring,
respectively.

The total Landau–de Gennes type free energy of the
system F per unit area of the confining surfaces is thus F ¼
ð1=AÞRdxdy½Rd

0 dzð’localf�g þ ’gradf�;rgÞ þ ’s0f�ðz ¼
0Þg þ ’sdf�ðz ¼ dÞg�. Here A is the area of the confining
surfaces, and the system thickness (distance between con-
fining surfaces) is denoted by d.

We carry out our calculation using a 32� 32� 33
parallelepiped lattice in which the unit structure is accom-
modated. Periodic boundary conditions are imposed along
the confining surfaces (or perpendicular to the z direction).
We let the shape and size of the system along the confining
surfaces vary according to the procedures presented in
Ref. [20], while the system thickness d along the z direc-
tion is fixed. As the initial condition, we employ the bulk
stable structure of BP I for � ¼ �1, � ¼ 0:7, and � ¼ 1
obtained in Ref. [20], which is dilated or compressed along
the z direction to conform to the system thickness d of our
numerical system. Depending on w and d, we can obtain
various stable (or metastable) structures as shown below.
To see if those structures can be (meta)stable for different
w and d, we also carry out different calculations employing
those structures as initial conditions.

In Fig. 1, we show several (meta)stable structures of
disclination lines obtained by our calculations. In addition
to those structures similar to the original BP I structure (a
and b), we also obtain different profiles, including an array
of double-helix disclination lines (c), two parallel arrays of
winding disclination lines almost perpendicular to each
other (d), and a staggered structure of disclinations at-
tached to the confining surfaces (e). The difference be-
tween Figs. 1(a) and 1(b) lies in the distribution of
disclination lines. To our knowledge, the latter three struc-
tures have never been observed nor discussed in the field of
liquid crystals [22]. It may be worthwhile to notice that, in
all the structures in Fig. 1, the unit structures projected onto
the confining surfaces (the right column) are expanded
from that of the bulk BP I (f) (the exception is the structure
(a); it is expanded in one direction and shrunk in the other),
and are no longer a square in contrast to bulk cubic blue
phases [though Figs. 1(b) and 1(d) may look like a square,
they are not]; fourfold symmetry about an axis along the z
direction is obviously absent. The fourfold symmetry axis

in bulk cubic blue phases is in fact a screw axis, which
implies that fourfold symmetry is associated with transla-
tional symmetry along the axis. The absence of transla-
tional symmetry due to confinement thus results in the
absence of a fourfold symmetry axis in a confined system.
To investigate the energetic stability of those defect

structures, we plot in Fig. 2 the free energy per unit surface
area F ¼ F� f0d as a function of the system thickness d
for 9 � d � 18, with f0 being the free energy density of
cubic blue phase I in the bulk. In Fig. 2, we also give the
free energy of a cholesteric phase for comparison [23].
Note that we are dealing with the cases where d is of the
order of the dimension of the unit cell of BP I structure
(12.60 for the parameters used here). In the case of weak
anchoring [w ¼ 0:1, Fig. 2(a)], energetically stable struc-
tures with the variation of d are a staggered structure
[Fig. 1(e)] at d ’ 9, one similar to that of the original
BP I [Figs. 1(a)] at 9 & d & 12, an array of double-helix
disclination lines [Fig. 1(c)] in a very narrow region around
d ¼ 12, orthogonal sets of winding disclinations [1(d)] at
12 & d & 14, and another structure similar to that of the
original BP I [Figs. 1(b)] at d * 14. The stability of BP I–
like structures in a wide range of d is a reasonable result
because surfaces with weak anchoring do not disturb so
much the stable BP I structure that is stable in the bulk.

FIG. 1 (color online). Various (meta)stable structures of dis-
clination lines. Shaded planes represent confining surfaces. The
view directions are along (top) and perpendicular to (bottom) the
confining surfaces. The parameters used are w ¼ 0:5 (for all the
figures), d ¼ 10 (a and e), and d ¼ 14 (b, c, and d). Here we
show a ‘‘unit structure’’, in which four faces other than the
confining surfaces are periodic boundaries. For reference, we
also present the structure of the bulk BP I in (f). Note that the
distance of the viewpoint from the center of those structures are
the same for all the figures, and therefore the dimensions of the
figures reflect the actual size of the unit structures.
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The stability of those structures in Fig. 1 is significantly
altered when the anchoring strength w is increased. For
w ¼ 0:5, the range of stable double-helix disclinations
[Fig. 1(c)] becomes larger to 10 & d & 14 and for d *
14, orthogonal sets of disclinations [Fig. 1(d)] are stable. In
the range of d we study, BP I–like structures no longer give
the smallest free energy. Notice also that in a very narrow
region around d ’ 10, the most stable structure is a stag-
gered one [Fig. 1(e)]. In the case of strong anchoring, w ¼
2:5, we find that for 12 & d & 16, double-helix disclina-
tions [Fig. 1(c)] is energetically the most favorable, while
for smaller d, a cholesteric phase is the most stable. At d *
16, orthogonal sets of winding disclinations [Fig. 1(d)] is

the most stable. These results clearly indicate that confine-
ment and surface anchoring significantly influences the
stability of disclination structures in confined blue phases.
That the BP I–like structures lose their stability for

larger w can be attributed to the energy loss of disclination
lines in contact with confining surfaces; disclination lines
in Figs. 1(c) and 1(d) do not touch the surfaces. The
stability of double-helix disclinations [Fig. 1(c)] over or-
thogonal ones [Fig. 1(d)] for relatively small d can again be
understood in an intuitive manner. When the system is
compressed to smaller d, orthogonal disclinations becomes
closer to each other, and feel repulsion. Eventually, it is
more energetically favorable if the reconnection of discli-
nation lines occurs at the points indicated by arrows in
Fig. 1(d) and the disclination lines transform to double
helix, Fig. 1(c). It can be also seen that double-helix
disclinations do not suffer from repulsion between discli-
nation even in the case of small d (of course, for small d,
interaction between disclinations and confining surfaces
becomes important. However, such interaction plays a
significant role in the orthogonal-disclination configuration
as well).
It is instructive to illustrate how liquid crystals are

aligned in the presence of those disclinations with non-
trivial geometry. Because of space limitations, we give a
detailed presentation only for the case of double-helix
disclinations in Fig. 1(c). The orientation profiles at three
cross sections are presented in Fig. 3(a). We find local
double-twist orientation profiles [5,6], which are indicated
by circles (�). As in cubic blue phases in the bulk, dis-
clination lines run in between those double-twist cylinders.
Schematic illustration of the arrangement of double-twist
cylinders is given in Fig. 3(b). Double-twist cylinders in
this configuration constitute a simple orthorhombic lattice,
in contrast to a body-centered-cubic lattice in BP I. We
note that the structure with orthogonal sets of winding dis-
clinations, Fig. 1(d), has almost the same arrangement of
double-twist cylinders, which demonstrates in a different
manner the similarity between the structures in Figs. 1(c)
and 1(d) mentioned above.
Here we comment on the possibility of experimental

observations of those disclination structures. Cano-wedge
geometry might be useful in the investigation of the effect
of sample thickness variations [24]. Lack of a fourfold
symmetry axis normal to the confining surfaces as men-
tioned above may be detected in a careful scattering ex-
periment. Notice also that three-dimensional lasing of blue
phases [25] might be affected by strong confinement. We
also point out the possibility of obtaining direct evidence of
the symmetry of the structures by freeze-fracture micros-
copy [26,27].
In conclusion, by numerical calculations based on a

tensor description of orientational order, we have shown
that various defect structures that have not been previously
discussed are possible in a strongly confined liquid-
crystalline blue phase. Those structures include an array
of double-helix disclinations, two orthogonal sets of par-
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FIG. 2 (color online). Plots of the free energy F as a function
of the system thickness d for w ¼ ðaÞ0:1, (b) 0.5, and (c) 2.5. The
legends in (a) are common for all graphs, and the labels (a)–(e) in
the legends correspond to those in Fig. 1. In (c), we also indicate
by an arrow the dimension of the unit structure of a bulk BP I
(12.60).

PRL 104, 017801 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

8 JANUARY 2010

017801-3



allel winding disclinations, and a staggered structure of
disclinations contacting the confining surfaces. In the
present study, we have focused on the case in which blue
phase I is stable in the bulk. The effect of temperature
change and the stability of other phases such as blue phase
II will be the subject of future studies. Nevertheless, we
believe that we have presented a novel aspect of the inter-
play between topological defects and confinement in a
liquid crystal, and that topological defects under an appro-
priate control can show far richer structures than we have
already known. Therefore we hope that our present study
will stimulate further theoretical and experimental studies
to find novel defect structures and perhaps also their use in
electro-optical applications. Furthermore, we expect that
our study will stimulate a search of confined structures in
chiral magnets.

This work was carried out while J. F. was staying at the
Department of Physics, University of Ljubljana. He thanks
Slovenian Research Agency (ARRS research program P1-
0099 and project J1-2335) for generous financial support
for his stay. J. F. is in part supported also by KAKENHI
(Grant-in-Aid for Scientific Research) on Priority Area

‘‘Soft Matter Physics’’ from the Ministry of Education,
Culture, Sports, Science and Technology of Japan.

*fukuda.jun-ichi@aist.go.jp
[1] N. D. Mermin, Rev. Mod. Phys. 51, 591 (1979).
[2] H.-R. Trebin, Adv. Phys. 31, 195 (1982).
[3] P. Chaikin and T. Lubensky, Principles of Condensed

Matter Physics (Cambridge University Press,
Cambridge, England, 1995).

[4] T.W.B. Kibble, J. Phys. A 9, 1387 (1976).
[5] P. G. de Gennes and J. Prost, The Physics of Liquid

Crystals (Oxford University Press, Oxford, 1993), 2nd ed.
[6] D. C. Wright and N.D. Mermin, Rev. Mod. Phys. 61, 385

(1989).
[7] H. Kikuchi et al., Nature Mater. 1, 64 (2002).
[8] H. J. Coles and M.N. Pivnenko, Nature (London) 436, 997

(2005).
[9] Samsung Electronics Co., Ltd., ‘‘15 inch Blue Phase Mode

LC Display’’, presented at SID2008 (Los Angeles, 2008).
[10] G. E. Brown and M. Rho, Phys. Rep. 363, 85 (2002).
[11] T. L. Ho, Phys. Rev. Lett. 81, 742 (1998).
[12] S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995).
[13] B. Binz, A. Vishwanath, and V. Aji, Phys. Rev. Lett. 96,

207202 (2006).
[14] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature

(London) 442, 797 (2006).
[15] I. Fischer, N. Shah, and A. Rosch, Phys. Rev. B 77,

024415 (2008).
[16] R. B. Meyer, Mol. Cryst. Liq. Cryst. 16, 355 (1972).
[17] G. E. Volovik and O.D. Lavrentovich, Zh. Eksp. Teor. Fiz.

85, 1997 (1983) [Sov. Phys. JETP 58, 1159 (1983)]; O. D.
Lavrentovich, Liq. Cryst. 24, 117 (1998).

[18] M.V. Kurik and O.D. Lavrentovich, Pis’ma Zh. Eksp.
Teor. Fiz. 35, 362 (1982) [JETP Lett. 35, 444 (1982)].

[19] Y. Bouligand and F. Livolant, J. Phys. (Paris) 45, 1899
(1984).

[20] J. Fukuda, M. Yoneya, and H. Yokoyama, Phys. Rev. E 80,
031706 (2009).

[21] M. Nobili and G. Durand, Phys. Rev. A 46, R6174 (1992).
[22] Though structures similar to those in Figs. 1(c) and 1(d)

have been reported in G. P. Alexander and D. Marenduzzo,
Europhys. Lett. 81, 66 004 (2008), they are transient ones
when a strong field is applied to bulk blue phase II.

[23] For the alignment of the cholesteric phase, the uniform
lying helix (ULH) configuration (helical axis parallel to
the confining surfaces) rather than the Grandjean configu-
ration has been employed. We have checked that the
former is energetically more favorable. In the ULH con-
figuration, the director is uniform along the z-direction,
except close to the surfaces. The total free energy F thus
depends linearly on d as found in Fig. 2.

[24] A. I. Feldman, P. P. Crooker, and L.M. Goh, Phys. Rev. A
35, 842 (1987).

[25] W. Cao et al., Nature Mater. 1, 111 (2002).
[26] B. Donnio et al., Liq. Cryst. 23, 147 (1997).
[27] J. Yamamoto et al., Nature (London) 437, 525 (2005).
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