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The optical properties of a plasmonic crystal composed of gold nanorod particles have been studied.

Because of the strong coupling between the incident light and vibrations of free electrons, the long-

wavelength optical properties such as the dielectric abnormality and polariton excitation etc., which were

suggested originally in ionic crystals, can also be present in the plasmonic crystal. The results show that

the plasmonic and ionic lattices may share a common physics.
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Recently, plasmonic materials composed of nanostruc-
tured metals have been intensively explored in realizing
enhanced optical transmission, optical magnetism, as well
as negative refractive index [1–3]. Employing plasmonic
photonic crystals to produce a photonic stop band also
opens up a new way for manipulating the motion of pho-
tons. In a metal surface, the surface-plasmon polariton
(SPP) mode, originating from the interaction of light
with the surface charges, can be supported. Stimulated by
the concept of dielectric photonic crystal, a two-
dimensional SPP crystal, a metal surface textured with
periodic particles or nanoholes (the lattice period is com-
parable with the SPP wavelength), has been constructed
[4,5]. Near the Brillouin zone boundary, a stop band for the
surface mode can be created due to the Bragg reflection.
Such a structure has been used to make subwavelength
plasmonic waveguides, highly dispersive photonic ele-
ments, and other devices [6,7]. In addition, because of
the larger dielectric contrast between the metal and dielec-
tric medium, metallic nanostructures are also favorable for
designing a three-dimensional plasmonic photonic crystal
that operates in the optical frequencies [8–11].

The Bragg reflection may not be the sole mechanism for
stop-band formation [12]. In this Letter, we suggest that a
strong coupling effect, between the incident light and
vibrations of free electrons, may exist in a plasmonic
crystal, i.e., a three-dimensional array of nanorod particles.
Because of the coupling effect (rather than the Bragg
reflection), a (polaritonic) stop band can be supported.
Compared with a common photonic crystal, here the lattice
period is of deep subwavelength. To study the effect, we
propose that the Huang-Kun equation, which was estab-
lished originally in ionic crystals where a strong coupling
between the photons and lattice vibrations is present, can
be extended to the plasmonic crystal. Accordingly, the
long-wavelength optical properties suggested in the former
[13,14], such as the dielectric abnormality, polariton exci-
tation, etc., can also be found in the plasmonic lattice. The
proposed effect has been demonstrated by the numerical

simulations. Thus our results also bridge the connection
between the artificial (plasmonic) and real (ionic) crystals.
The plasmonic crystal under our study is composed

of gold nanorod particles, which are well separated and
arranged in a simple-cubic lattice in a host medium.
Figure 1(a) shows the schematic view of the structure.
Here, the lattice constant is d, the permittivity of the host
medium is "d, and the nanorod has a length of l and radius
of r0. Supposing that the radius of the nanorod is smaller
than the skin depth (r0 < �� 22 nm), the fields inside the
nanorod can be taken to be homogeneous. We also assume
that the sizes of nanorod are much larger than the Fermi
wavelength (r0 � �F � 0:5 nm) and that the mean level
spacing or Kubo gap (�E ¼ 4EF=3N, where EF is the
Fermi energy and N is the number of electrons) is very
small compared with the thermal energy kT (For a very
small metal particle with a larger Kubo gap, the quantum
size effect will be dominant [15]). Consequently, the quan-
tum effect in the nanorods can be ignored and a classic
description of the effect is applicable.
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FIG. 1 (color online). Schematic view of the structure under
study: (a) in the plasmonic crystal, gold nanorod particles are
arranged in a simple-cubic lattice. The incident light propagates
in the x direction with the electric field along the rod axis; (b) the
free electrons in the nanorod can be excited, leading to the
accumulation of positive and negative charges on the opposite
sides and the formation of a dipole moment.

PRL 104, 016402 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

8 JANUARY 2010

0031-9007=10=104(1)=016402(4) 016402-1 � 2010 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.104.016402


When the incident light propagates with the electric field
along the rod axis, the motion of free electrons can be
excited and positive and negative charges will accumulate
on the opposite sides of the nanorods, thus forming the
electric dipole moment. This dipole moment stemming
from electronic motion is equivalent to that caused by the
relative motion of ions in an ionic crystal. On the other
hand, the electric dipoles will emit electromagnetic waves,
which further interfere with the incident light. The above
effect can be enhanced in certain conditions. As we know,
due to the near-field coupling, a metallic particle will
interact with its neighbors such that a particle plasmon
wave (or polarization wave) of transverse or longitudinal
nature can propagate along the array of particles [16]. The
dispersion relation for the transverse particle plasmon
wave, which is similar to that of the optical branch phonon
mode in an ionic crystal, will intersect the light line.
Consequently, near the crossing of dispersion curves, the
incident light couples strongly to the transverse plasmon or
polarization wave of the rod lattice. In that case, the
propagation mode is neither a pure photon mode nor a
pure plasmon mode. It is called a polariton mode, a mixture
of the photons and polarization waves [14].

The plasmon resonance in a gold nanorod (along the rod
axis) can occur at a much longer wavelength [17]. Here, we
are interested in the case that the lattice constant is very
small compared with the light wavelength and thus, the
photons interact strongly with the transverse plasmon wave
near the center of the Brillouin zone. Similar to an ionic
crystal [13], the fundamental equations governing the cou-
pling effect in a plasmonic crystal may be given, in the
long-wavelength approximation, as

€W ¼ b11W þ b12E;

P ¼ b21W þ b22E:
(1)

Here, W represents the motion of free electrons in the
nanorod, E is the electric field of the light, and P is the
dielectric polarization induced by the electronic motion
and the electric field. And, b11, b12, b21, and b22 are four
unknown coefficients.

To illustrate the above idea, we first consider the motion
equation of free electrons in a nanorod [see Fig. 1(b)]. Note
that, in the long-wavelength limit, the electronic motions
of all nanorods can be taken to be almost identical. This
enables us to use one parameter to characterize the long
transverse plasmon waves. Moreover, different from an
array of nanorod pairs which has a magnetic response
[2,18], the effect of light magnetic field can be neglected
in our structure, as there is only one nanorod in a unit cell.
Under the action of an electric field of light, the motion of
free electrons obeys Newton’s equation md2z=dt2 ¼
�ETe� �mdz=dt. Here,m, e, and � are the mass, charge,
and collision frequency of the free electrons respectively, z
is the electronic displacement relative to the equilibrium
positions, and ET is the total electric field in the nanorod.
Previously, we have shown that a gold nanorod can be

modeled as an LC circuit having a self-inductance L ¼
ð�0l=2�Þ lnðl=2r0Þ and a capacitance C ¼ 5�"0"dr0=2,
where the two end faces of the nanorod become a circular
capacitor [19]. Thus, the total electric field can be ex-

pressed as ET ¼ Eð1Þ
eff þ EL þ EC, where Eð1Þ

eff represents

the effective electric field imposed on the nanorod (caused
by light and nanorod polarization), EL ¼ �ðL=lÞd2q=dt2
is the induced electric field associated with the self-
inductance (q is the charge carried by the capacitor), and
EC ¼ �q=Cl is the electric field resulting from the circular
capacitor. Noticing that q ¼ �nesz (n is the density of free
electrons in the gold, s ¼ �r20 is the nanorod cross-

sectional area), one obtains

ðmþ �LÞ€z ¼ �ð�=CÞz� �m _z� Eð1Þ
effe; (2)

where � ¼ ne2s=l is a coefficient dependent on the nano-
rod size and the electron density (for gold, a realistic value
of n ¼ 5:90� 1028 m�3 is used in the calculation).
It can be seen from Eq. (2) that the free electrons

confined in the nanorod will behave as the forced harmonic
oscillators, which are characterized by an effective restor-
ing force F ¼ �keffz (keff ¼ �=C) and an increased effec-
tive mass meff (meff ¼ mþ �L). The restoring force is
related to the nanorod capacitance, where the accumulated
charges in the capacitor will prohibit the directional motion
of electrons. The effective mass of electrons is increased
due to the self-inductance of the nanorod, an electromag-
netic inertia of the system (the increased electron mass has
also been suggested for the periodic metallic wires [20]).
For a nanorod with the length 150 nm and diameter 30 nm,
for example, the effective electron mass attains meff ¼
1:38m. According to Eq. (2), the resonance frequency of

free electrons in a single nanorod is !o ¼ ðkeff=meffÞ1=2.
Equation (2) also suggests that the optical response of the
free electrons in a nanorod is similar to that of the bounded
electrons in a classic atom. Thus the gold nanorods can also
be taken as the plasmonic ‘‘atoms’’.
The dielectric polarization of the plasmonic crystal

comes from both electronic displacement in the nanorods
and polarization in the host medium. The motion of free
electrons along the rod axis gives rise to a dipole moment
p ¼ ql ¼ �nelsz. In the long-wavelength approximation,
the macroscopic polarization due to the free electrons is
Prod ¼ �nels z=�, where � ¼ d3 is the volume of unit
cell. On the other hand, the macroscopic polarization of the
host medium (related to the bounded electrons) can be

written as Phost ¼ "0�E
ð2Þ
eff , where � is the molecule polar-

izability per unit volume and Eð2Þ
eff is the effective electric

field acting on the medium molecules. Hence, the total
dielectric polarization of the crystal reads

P ¼ �ðnels=�Þzþ "0�E
ð2Þ
eff : (3)

To establish the relationship between Eqs. (1)–(3), the
effective electric field imposed on the nanorods and me-
dium molecules should be determined. According to the
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Lorentz effective-field model, we have Eð1Þ
eff ¼ Eþ

Prod=3"0"d for the nanorod and Eð2Þ
eff ¼ Eþ Phost=3"0 for

the mediummolecule. It is not difficult to find that, with the
use of the effective-field formula, Eqs. (2) and (3) can be
transformed to the following form:

€W ¼ �
�
!2

o � Q2

3"0"dM�

�
W þ Q

ðM�Þ1=2 E;

P ¼ Q

ðM�Þ1=2 W þ "0ð"d � 1ÞE:
(4)

Here, W ¼ ðM=�Þ1=2z is the motion parameter propor-
tional to the electronic displacement, M ¼ nlsmeff and
Q ¼ �nlse are, respectively, the total effective mass and
total charge of free electrons in a nanorod. In deriving
Eq. (4), the Clausius-Mossotti formula � ¼ 3ð"d �
1Þ=ð"d þ 2Þ has been used and the loss from the electronic
collision in the nanorod has been neglected. One can see
from Eqs. (1) and (4) that they have the same format, thus
demonstrating the validity of the original hypothesis. The
unknown coefficients in Eq. (1) are then determined, re-

spectively, to be b11 ¼ �ð!2
o �Q2=3"0"dM�Þ, b12 ¼

b21 ¼ Q=ðM�Þ1=2, and b22 ¼ "0ð"d � 1Þ.
Equation (4) becomes the basic equations that describe

the coupling effect between the photons and the long
transverse plasmon wave. With the use of Eq. (4), the
dielectric function can be obtained as

"ð!Þ ¼ "d þ fm=meff

!2
s �!2

!2
p: (5)

Here, !s ¼ ð�b11Þ1=2 ¼ ð!2
o � fm!2

p=3meff"dÞ1=2 is the

eigenfrequency of the system, which is smaller than that of
a single gold nanorod (!o) due to the collective effect;

!p ¼ ðne2=m"0Þ1=2 is the bulk plasma frequency of the

gold; and f ¼ ls=� is the filling ratio of the nanorods.
Moreover, the dispersion relation of the polariton mode can
be deduced with Maxwell equations and Eq. (5), yielding

c2k2

!2
¼ "d þ fm=meff

!2
s �!2

!2
p; (6)

where c is the light velocity in vacuum. The result resem-
bles that obtained in an ionic crystal where the photons
couple strongly with the transverse optical phonons and
phonon-polariton dispersion is induced.

The polariton dispersion and dielectric abnormality are
plotted, respectively, in Figs. 2(a) and 2(b) as a function of
normalized frequency (!=!s). Without loss of generality,
here the lattice constant is 80 nm, the permittivity of the
host medium is 2.25, and the length and diameter of the
nanorod is 40 nm and 10 nm, respectively. [Note that, here,
the Kubo gap (�E� 40 �eV) is 3 orders of magnitude
smaller than the thermal energy at room temperature (kT �
26 meV), thus justifying the classical approach]. This
gives a resonance wavelength of �s ¼ 2�c=!s ¼
960 nm, significantly larger than the lattice constant (the
resonance wavelength of a single nanorod is �o ¼

940 nm). In Fig. 2(a), the inclined solid line and the flat
dotted line correspond, respectively, to the light wave and
the long transverse plasmon wave without mode coupling.
The region of crossover of the solid and dotted lines is the
resonance region, where the photons couple strongly to the
long transverse plasmon wave (the solid circles represent
the coupled mode). Near the resonance the propagation
mode is not a pure photon mode or a pure plasmon mode
but a coupled wave field consisting of both components.
The quantum of this coupled mode is called a polariton.
One important effect of the coupling is that a polaritonic

stop band will be created in the frequency range [!s, !t],
where the dielectric function is negative [see Fig. 2(b)]
and the wave vector becomes imaginary (thus the light
propagation will be forbidden). Here, the upper cutoff

frequency is determined, by setting "ð!Þ ¼ 0, to be !t ¼
ð!2

s þ fm!2
p=meff"dÞ1=2. With the used parameters, the

corresponding cutoff wavelength is �t ¼ 905 nm (here
the effective electron mass is meff ¼ 1:04m). The relative
band width, which is defined as the absolute band width
divided by the eigenfrequency, is approximately � ¼
fm!2

p=2meff"d!
2
s . From it, the relative band width is

found to be � ¼ 6:3%, which is 1 order of magnitude
larger than the particle filling ratio (f ¼ 0:6%). In addition,
when the loss from the free electrons is accounted [see
Eq. (2)], a damping term�iðm=meffÞ�! will appear in the
denominator of dielectric function. This leads to a maximal
imaginary part of dielectric function [see inset of Fig. 2(b)]
and a peak of absorption locating at the eigenfrequency.
The absorption is equivalent to the infrared absorption in
an ionic crystal.
To verify the polaritonic stop-band effect, we have cal-

culated the transmission spectrum of a plasmonic crystal
film analytically and compared it with the numerical re-
sults (the lattice parameters mentioned above are used).
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FIG. 2 (color online). Calculated polariton dispersion (a) and
dielectric abnormality (b). Inset shows the complex dielectric
function where the loss of gold is considered: the solid line and
circles represent, respectively, the real and imaginary part of the
function (here � ¼ 5� 1013 rad=s has been used).
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For a free-standing film with the thickness h, the trans-
mission efficiency of a normally incident light is

t ¼
��������

4k0k expðikhÞ
ðk0 þ kÞ2 � ðk0 � kÞ2 expð2ikhÞ

��������
2

: (7)

Here, k0 is the wave vector in free space and k is the wave
vector of the polariton mode. The transmission spectrum
calculated by Eqs. (6) and (7) is presented as the solid
circles in Fig. 3(a), showing a polaritonic stop band be-
tween 905 and 960 nm (the film thickness is 1600 nm,
twenty unit cells thick). In the pass band, amplitude oscil-
lation is observed due to the film Fabry-Perot resonance.
As a comparison, Fig. 3(a) also presents the spectrum (the
open circles) of the same structure simulated with the com-
mercial software package FDTD Solutions 6.5 (Lumerical
Solutions, Inc., Canada). In the numerical simulation, the
gold is modeled with a lossless Drude model "m ¼ "1 �
!2

p=!
2, where "1 ¼ 7 and !p ¼ 1:37� 1016 rad=s are

used according to the experimental data of gold [21]. One
can see that the numerical simulation agrees well with the
analytical calculations, concerning the opening of stop
band and amplitude oscillation in the pass band.

Additional insight can be provided by studying the
transmission spectrum with a varying incident angle.
Figure 3(b) presents the numerical results for TE polariza-
tion, where the electric field is fixed along the rod axis to
maximize the coupling effect. The results show that the
stop-band formation is not dependent on the incident angle
or following the Bragg diffraction. This can be understood,
as the wavelength is much larger than the lattice constant

and the light only ‘‘feels’’ an average response. In addition,
we also calculated the transmission spectra, as shown in
Fig. 3(c), of the structure considering the loss of gold
(normal incidence). Here, the solid circles represent the
analytical results of Eq. (7) and the open circles the nu-
merical results using a lossy Drude dispersion (in both
cases, � ¼ 5� 1013 rad=s was used). A nearly perfect
agreement between them is found. The results show that
the stop band still survives but is enlarged due to the
absorption.
In summary, the long-wavelength optical properties of a

plasmonic crystal composed of nanorod particles have
been studied. We emphasized the concept of the polariton,
which is due to the coupling between the photons and the
long transverse plasmon wave. The polaritonic stop band,
associated with the coupling effect rather than the Bragg
reflection, has been suggested. The results also show that
the long-wavelength method developed for an ionic crystal
can be applied to a plasmonic crystal and that the artificial
and classic lattices may share a common physics.
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FIG. 3 (color online). (a) Analytically calculated (the solid
circles) and numerically simulated (the open circles) transmis-
sion spectra (normal incidence and loss-free); (b) Simulated
spectra (loss-free) with the incident angle being 0 (the solid
circles), 15 (the open circles), and 25 (the open squares) degrees;
(c) Spectra (normal incidence) accounting for the loss of gold:
the solid and open circles represent the analytical and numerical
results, respectively. Here, a free-standing plasmonic crystal film
with the thickness 1600 nm was used.
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