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High power microwave breakdown at atmospheric pressure leads to the formation of filamentary

plasma arrays that propagate toward the source. A two-dimensional model coupling Maxwell equations

with plasma fluid equations is used to describe the formation of patterns under conditions similar to recent

experiments and for a wave electric field perpendicular to the simulation domain or in the simulation do-

main. The calculated patterns are in excellent qualitative agreement with the experiments, with good

quantitative agreement of the propagation speed of the filaments. The propagation of the plasma filaments

is due to the combination of diffusion and ionization. Emphasis is put on the fact that free electron dif-

fusion (and not ambipolar diffusion) associated with ionization is responsible for the propagation of the

front.
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Gas breakdown by microwave fields has been the subject
of many experimental and theoretical works since the
1950s and a summary of the early work can be found in
[1]. The studies of microwave breakdown have long been
focused on the measurements and theoretical determina-
tion of the breakdown field as a function of pressure and
pulse duration. The availability of fast camera and imaging
systems has more recently allowed very interesting studies
of the dynamics of microwave breakdown [2–7]. Some of
these studies have shown the formation of complex plasma
structures evolving in time and, under certain conditions,
propagating toward the source. In this Letter we focus on
the experimental results of Hidaka et al. [5,6] where accu-
rate measurements and observations of the plasma dynam-
ics and pattern formation during microwave breakdown are
reported for different gases at and around atmospheric
pressure. A model of these experiments has been recently
proposed by Nam and Verboncoeur [8]. The model of [8] is
one dimensional (1D) and is based on a fluid description of
electron transport in argon at atmospheric pressure, assum-
ing quasineutrality and ambipolar diffusion, coupled with
the electromagnetic wave. The authors of [8] show that
under these model assumptions, the incident wave is re-
flected by the forming filament (plasma sheets in the 1D
model), resulting in an enhanced electric field at a distance
of a quarter wavelength, �=4 from the filament. Diffusion
and ionization in the enhanced field leads to the formation
of a new filament upstream, at a distance around �=4 of the
previous one. This is qualitatively consistent with the
experimental observations and interpretations of [5,6].
The plasma density calculated in [8], however, reaches
surprisingly high values (4:5� 1023 m�3), for an applied
field amplitude of 5 MV=m at 110 GHz in argon at atmos-
pheric pressure.

In this Letter we present a two-dimensional model of the
propagation of a self-organized plasma array in conditions
closer to those of [5], i.e., in air at atmospheric pressure.
The model results are in excellent qualitative agreement
with the experimental results of [5,6] and can explain the
observed 3D structures. They give a good quantitative
prediction of the propagation speed of the plasma pattern
and show that free electron diffusion combined with ion-
ization are responsible for the propagation of the plasma
front (contrary to the model of [8] where the use of
ambipolar diffusion leads to a large overestimation of the
plasma density).
Before going into the details of the microwave break-

down model and results we first discuss the question of free
vs ambipolar diffusion of the plasma front. In a microwave
plasma, the total electric field is the sum of the high
frequency wave field and of a dc or slowly varying field
due to space charge effects. The high frequency field E
plays an essential role in electron heating and ionization,
but its contribution to particle transport averaged over one
period of the wave is negligible. The field contributing to
charged particle transport averaged over one cycle is the
space charge field, Esp, which should be obtained by

solving Poisson’s equation together with electron and ion
transport equations. Under conditions where the plasma
dimensions are much larger than the electron Debye length

�D ¼ ½"0kTe=e
2n�1=2, it is often sufficient to describe

space charge effects through an ambipolar diffusion coef-
ficient Da, and to write the continuity equation for the
plasma density n, as:

@tn�D�n ¼ S ¼ n�i: (1)

Here, D ¼ Da if one assumes ambipolar diffusion, S is the
source term, �i is the ionization frequency and depends on
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the wave field. For a constant, given, ionization frequency,
the well known asymptotic solution of Eq. (1) is a Gaussian
of the form:

nðr; tÞ ¼ At�3=2 exp½�it� r2=4Dt�: (2)

The density of Eq. (2) exhibits a front that propagates at
a speed v ¼ 2

ffiffiffiffiffiffiffiffiffi
D�i

p
, and this result can be generalized [9]

to more complex source terms S, for example, including
electron-ion recombination, (with coefficient rei), i.e., such
as S ¼ n�i � rein

2. The characteristic length of the front,
defined as jrn=nj�1 in a reference frame moving at the

speed v, is L ¼ ffiffiffiffiffiffiffiffiffiffiffi
D=�i

p
.

The question is, however, should the diffusion coeffi-
cient in Eq. (1) be the ambipolar diffusion coefficient or the
free electron diffusion coefficient? This question arises
since even if the plasma dimension is much longer than
the Debye length, the plasma density at the front goes to
zero and, therefore, there should be a small region in the
front where the electrons diffuse freely. This question has
been considered somewhat empirically in several papers
such as [2,10,11]. For example, in [2], the authors indicate
that the calculated plasma propagation speed matches the
experimental one only if the free diffusion coefficient is
used in (1). Theoretical evidence of the fact that the free
diffusion coefficient should be used has been provided by
Ebert et al. in [12,13]. Ebert et al. consider streamer
propagation under a dc electric field. They show that the
velocity of the streamer front is equal to the electron
drift velocity at the front, plus a corrective term due to
diffusion and equal to 2

ffiffiffiffiffiffiffiffiffiffiffi
De�i

p
where De is the free elec-

tron diffusion. This result can certainly be applied to our
problem where the cycle averaged electron drift velocity is
zero, and the speed of the front is therefore 2

ffiffiffiffiffiffiffiffiffiffiffi
De�i

p
. How-

ever, free diffusion prevails only in the front while the
plasma bulk is controlled by ambipolar diffusion. A simple
scaling parameter controlling the transition from ambipo-
lar to free diffusion in the front can be deduced from the
current continuity equation in the drift-diffusion approxi-
mation in the case of a planar front (similar to Eq. (5) of
Ref [12]), which writes, assuming quasineutrality:

�M@tEsp þ Esp ¼ �De �Di

�e þ�i

@xn

n
: (3)

Esp is the space charge field, �M is the dielectric (or

Maxwell) relaxation time, �M ¼ "0=½enð�e þ�iÞ�, (�e,
�i) and (De, Di) are, respectively, the electron and ion
mobility and diffusion coefficients. In a reference frame X
moving with the front at the velocity v ¼ 2

ffiffiffiffiffiffiffiffiffiffiffi
De�i

p
the first

term of the left-hand side of Eq. (3) is �M@tEsp ¼
�v�M@XEsp [13]. Approximating @XEsp in the front by

�Esp=2L, where L ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
De=�i

p
, we get �M@tEsp �

�i�MEsp; i.e., the first term of Eq. (3) is of the order of � ¼
�i�M with respect to the second term. Equation (3) can
therefore be approximated by:

Esp � � 1

1þ �

De �Di

�e þ�i

@xn

n
: (4)

Using this expression of the field in the electron flux � ¼
�n�eE�De@xn, leads to � � �Deff@xn with

Deff � �De þDa

�þ 1
with � ¼ �i�M ¼ �2

D=L
2 (5)

where we have assumed �i � �e, Di � De.
The heuristic arguments above justify the use of Eq. (1)

with the effective diffusion coefficient (5). This model is
not mathematically exact but gives the good limits and a
correct estimation of the parameter � controlling the cross-
over from ambipolar diffusion in the plasma (� � 1) to
free diffusion in the front (� � or> 1). Comparisons be-
tween numerical solutions of the drift-diffusion Poisson
system for a given ionization frequency, with solutions of
Eq. (1) with D ¼ Deff show excellent agreement and will
be presented in a forthcoming paper.
In our microwave problem we can expect that v ¼

2
ffiffiffiffiffiffiffiffiffiffiffi
De�i

p
is still a good estimation of the front velocity,

but with �i being the result of the complex interaction
between the plasma and the wave. We now consider the
coupling of Maxwell’s equations with the plasma in air.
Ionization and attachment are considered, but the effects of
negative ions are neglected. Maxwell’s equations:

r �E ¼ �@tB (6)

r �H ¼ Jþ "0@tE (7)

are coupled with the plasma equations through the electron
current (ion current is neglected), J ¼ �enve, with:

@tve ¼ �eE=m� �mve (8)

@tn�Deff�n ¼ nð�i � �aÞ � rein
2: (9)

We use the classical assumption that the ionization and
attachment frequencies �i and �a are functions (obtained
from Bolsigþ [14]) of the local effective field Eeff :

Eeff ¼ Ermsð1þ!2=�2
mÞ�1=2: (10)

Mobility, diffusion and recombination coefficients are sup-
posed to be constant and given by �e ¼ eðm�mÞ�1 ¼
3:7� 10�2 m2=V=s,�e=�i ¼ 200,De ¼ �ekTe=e,Di ¼
0, kTe ¼ 2 eV, rei ¼ 0. �m is the electron-neutral momen-
tum transfer frequency.
Maxwell’s equations are solved using the classical

FDTD (finite-difference time-domain) numerical scheme
with absorbing boundary conditions on the walls. After
integration of the Maxwell equations over one cycle of the
microwave field, the local effective field (10) is calculated
and used to solve the quasineutral plasma density equa-
tion (9) for the next cycle [the time step of the density
equation (9) is one cycle of the microwave field].
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Maxwell’s Eqs. (6) and (7) are then integrated together
with Eq. (8) for another cycle, using the updated density.
The spatial grids for Maxwell’s equation and the density
equation are different, because of the sharpness of the
plasma front (respectively 100 and 500 grid points per
wavelength). The amplitude of the incident field is
6 MV=m, the frequency is 110 GHz. The initial electron
density is a Gaussian with maximum density 1013 m�3 and
standard deviation 50 �m. The equations are solved in a
2D (x, y) Cartesian domain of dimensions (3�� 3�) (in-
variance assumed in the direction perpendicular to the
domain).

We consider two different simulation cases. In the first
case, the electric field is perpendicular to the simulation
domain and the magnetic field is in the domain, while the
opposite is true in the second case. We see below that these
two 2D simulations reproduce well the experimental (3D)
patterns observed in the B and E planes of the incident
wave.

Figure 1 shows the plasma density and rms field at three
different times for the case of an E field perpendicular to
the simulation domain. At t ¼ 106 ns [Figs. 1(a) and 1(d)],
a filamentary pattern has already formed (filaments are
parallel to E, i.e., perpendicular to the simulation domain)
and is propagating toward the source (x ¼ �1). The
mechanisms of pattern formation and propagation can be
understood from Fig. 1. The filament at the front [Figs. 1(a)
and 1(d) t ¼ 106 ns] reflects and scatters the electro-
magnetic field. The resulting standing wave presents off-
axis field maxima that generate two off-axis filaments
[Figs. 1(b) and 1(e), t ¼ 118 ns] through a combination
of diffusion and ionization in the enhanced field. The
addition of the field reflected by this structure to the
incident field leads to a field maximum on axis, resulting
in a new on-axis filament [Figs. 1(c) and 1(f), t ¼ 124 ns].

The distance between on-axis filaments is on the order of
�=4 (�� 2:7 mm). The electron density in the filaments
reaches maximum values on the order of 3� 1021 m�3,
significantly smaller than in [8]. The wave is only partially
reflected by the filamentary pattern as seen on the 1D plots
of Fig. 1. The front of the foremost filament therefore
‘‘sees’’ a field on the order of 5 MV=m. The ionization
frequency for this field is about 2� 109 s�1 and an esti-
mation of the front velocity 2

ffiffiffiffiffiffiffiffiffiffiffi
De�i

p
for these conditions is

30 km=s, in agreement with the velocity that can be de-
duced from the simulated pattern propagation, and close to
the measured values of [5,6]. The results also show that the
propagation velocity is not sensitive to the value of the
recombination coefficient. The details of the pattern may
however depend on the value of the recombination coeffi-
cient. This will be discussed in a forthcoming paper. Note
that in [8], where Da was used instead of De in the front,
the calculations were done for argon whose ionization
frequency is considerably larger than in air. The higher
value of �i compensates for the low value ofDa, so that the

propagation speed in [8] seems of the same order of
magnitude as in the experiments in air.
Results for the case where the E field is in the simulation

plane are illustrated in Fig. 2. The filaments are stretched in
the direction of the incident field. The initial Gaussian
electron distribution first grows isotropically [Fig. 2(a), t ¼
10 ns]. When the plasma density becomes sufficiently
large, the electric field is enhanced at the poles of the
plasma ball in the direction of the applied field.
Ionization increases in these regions and the plasma there-
fore propagates faster in the direction of the field [Fig. 2(a),
t ¼ 20 ns], forming an elongated filament in the y direc-
tion, sometimes called a microwave streamer. As the
plasma density grows, the incident field starts to be re-
flected by the filament, giving rise, through a combination
of ionization and diffusion, to standing waves and to the

FIG. 1 (color online). (a),(b),(c) Distribution of the plasma
density (filled contours, larger densities in lighter colors) and
rms field (contour lines, higher field intensity corresponds to
lighter color contours), Ez;rmsðx; yÞ at three different times (re-

spectively, 106, 118, and 124 ns) for a 6 MV=m wave amplitude
at 110 GHz with an E field perpendicular to the simulation plane.
The position of the initial Gaussian density is marked by a white
dot in (a) [x ¼ 0 in (d), (e), (f)]. The aspect ratio of the figures is
1; (d),(e),(f), density and rms field distributions on axis at the
same times (units are 1021 m�3, and MV=m, respectively). The
wave propagates from left to right (wave vector k k to the x
direction). The magnetic field B of the incident wave is k to the y
direction.
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generation of a new filament upstream, at a distance about
�=4 from the previous one [Fig. 2(a), t ¼ 30 ns]. The
propagation of the plasma toward the source is therefore
associated with the reflection and formation of standing
waves. The elongation of the plasma filaments in the
direction parallel to the incident field is associated with
the field enhancement at the tip of each filament. The
filament growth stops because of the screening of the field
by the new filaments. Figure 2(b) is in excellent qualitative
agreement with images of the plasma in the E plane
obtained in [5,6]. The standing wave in front of the plasma
pattern and the enhanced field at the tip of each filament
can be clearly seen in Fig. 2(c).

In summary, a 2D model coupling Maxwell’s equations
and a simple plasma diffusion equation at atmospheric
pressure can reproduce strikingly well the features ob-
served during microwave breakdown at atmospheric pres-
sure. Two 2D simulations performed for a transverse
electric and a transverse magnetic wave reproduce the
experimental 3D patterns observed in the B and E planes
of the incident wave. The propagation of the filamen-
tary plasma pattern toward the source is due to an ioniza-
tion wave mechanism driven by a combination of diffusion

and ionization in the E field pattern resulting from reflec-
tion and scattering of the wave by the filaments. Free
electron diffusion and not ambipolar diffusion (used in
many modeling works) must be taken into account to
describe the propagation of the plasma front. Filaments
develop and extend in the direction of the incident E due to
field enhancement by polarization at their tip. A pattern of
parallel filaments distant from about �=4 is formed and
propagates toward the source. The propagation speed is on
the order of 2

ffiffiffiffiffiffiffiffiffiffiffi
De�i

p
where the ionization frequency is the

ionization rate at the front. Calculations performed for
different gases and pressures also show good agreement
with the experimental results of Ref. [6] and will be
presented in future papers.
This work has been performed in the frame of the RTRA

STAE PLASMAX project.
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FIG. 2 (color online). (a) Evolution of the plasma density
distribution for an E field in the simulation plane (6 MV=m,
110 GHz), at times t ¼ 10, 20, 30, 40, 50, 60 ns (maximum
plasma density, respectively, 6� 10�2, 3.2, 3.9, 4.9, 6.1, and
5:2� 1021 m�3, larger densities are in lighter colors);
(b) Plasma density distribution at t ¼ 102 ns (maximum 5:2�
1021 m�3); (c) rms field, Ermsðx; yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2
x;rms þ E2

y;rms

q
at t ¼

102 ns (maximum 6:7 MV=m, smaller fields are in lighter
colors). The wave propagates from left to right (wave vector
k k to the x direction). The electric field E of the incident wave
is k to the y direction.
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