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The correlation buildup and the formation dynamics of the shell structure in a spherically confined one-

component plasma are studied. Using Langevin dynamics simulations the relaxation processes and

characteristic time scales and their dependence on the pair interaction and dissipation in the plasma

are investigated. While in systems with Coulomb interaction (e.g., trapped ions) in a harmonic

confinement shell formation starts at the plasma edge and proceeds inward, this trend is significantly

weakened for dusty plasmas with Yukawa interaction. With a suitable change of the confinement

conditions the crystallization scenario can be externally controlled.
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Crystallization of charged particles, predicted by
Wigner seven decades ago, continues to stimulate research
in many fields due to its relevance for astrophysics (e.g.,
white dwarf stars), basic many-body physics, and potential
applications in quantum computing, e.g., [1]. Experimental
realizations include electrons on a helium surface [2], ions
in traps [1,3–5], electrons in quantum dots [6], dusty
plasmas [7,8], and ultracold neutral plasmas [9,10]. For
crystallization to be possible in thermodynamic equilib-
rium in a macroscopic three-dimensional one-component
plasma, the coupling parameter, � ¼ q2=ðaWSkBTÞ has to
exceed a value of about 174, where aWS denotes the
Wigner-Seitz radius, q the charge, T the temperature, and
kB Boltzmann’s constant, whereas additional conditions
have to be fulfilled in two-component plasmas [11].
Recently, crystallization of spherically trapped dust parti-
cles has been achieved [12] which revealed close similar-
ities to ion crystals in traps [1,3] with the main difference
being the screening of the Coulomb interaction in the
former case [13,14].

While the structural properties of the crystals are well
understood, e.g., [11,15], much less is known on the dy-
namics of their formation. Murillo showed [16] that a
neutral two-component plasma produced by rapid ioniza-
tion of an atomic gas will not crystallize because the
correlation buildup is accompanied by heating [17] which
limits �. Then Pohl et al. demonstrated that crystallization
can be achieved if the expanding plasma is laser cooled
[18], which still has not been realized experimentally
[9,10]. An interesting prediction of [18] was that spherical
crystal shells start to form in the cluster core. It is an open
question whether this is a general crystallization scenario
in trapped plasmas since, so far, no time-resolved inves-
tigations on the crystal formation dynamics in spherically
trapped ions and dusty plasmas have been reported [19].

The goal of this Letter is, therefore, to perform such an
analysis for spherically confined dusty plasmas. We study
in detail the time dependence of crystallization by simu-
lating an experimental cooling process from a weakly
correlated finite dust cloud towards strong coupling. We

show that the formation of spatial correlations proceeds in
a sequence of stages and present results for the character-
istic time scales. Further, the dependence of the dynamics
on screening and dissipation is explored. We predict that
the onset of shell formation is typically at the cluster edge,
but the order of appearance of the inner shells can be
controlled by suitable variation of the confinement.
Finally, when the core region is made unaccessible to the
plasma crystallization can be initiated in the center.
Model and simulation idea.—We consider N identical

particles with mass m and charge q interacting through a
Yukawa pair potential [13]�ðrÞ ¼ q2e��r=r in an external
confinement VðrÞ. The effective range of �ðrÞ is deter-
mined by the screening parameter �. The dynamics of our
system is described by the Hamiltonian
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With a harmonic confinement VðrÞ ¼ m!2
0r

2=2 this model

accurately describes the properties of spherical dust balls
observed in recent experiments [13,20] and is equally ap-
plicable to spherically trapped ions in the limit � ¼ 0. Be-
low we use dimensionless units with the characteristic

length and energy scales a¼ðq2=m!2
0Þ1=3 and E0¼q2=a.

The ambient neutral gas in dusty plasma experiments is
accounted for by an additional damping term and a fluctu-
ating force in the (Langevin) equation of motion of the ith
particle

m€ri ¼ �riUðr1; . . . ; rNÞ �m� _ri þ fiðtÞ: (2)

The friction coefficient � and the Gaussian noise fiðtÞ are
related by the fluctuation-dissipation theorem

hf�i ðtÞf�j ðt0Þi ¼ 2m�kBT
��ij����ðt� t0Þ, where �;� 2

fx; y; zg and i; j 2 f1; . . . ; Ng. In Ref. [18] this method
was used to describe the cooling effect of the laser.
We consider the following scenario to study the

buildup of correlations: We start from a weakly correlated
steady state of N trapped dust particles characterized by
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�i ¼ q2=ðakBTiÞ ¼ 0:2 which can be prepared, e.g., by
continuous laser heating, which has been successfully
applied in experiments on 2D layers [21]. At the time t ¼
0 the laser is turned off and the particles begin to slow
down at a rate determined by the friction coefficient �,
approaching a new equilibrium at the neutral gas tempera-
ture Tn corresponding to strong coupling with �n ¼ 125.
This scenario allows us to study the correlation buildup in a
well-defined manner without introducing spatial inhomo-
geneities. The chosen Tn is of the order of recently mea-
sured normal mode temperatures [22]. Because of the
external trap the system is inhomogeneous but isotropic;
i.e., the mean density will only depend on the distance r
from the trap center. To reduce the effect of fluctuations we
perform several hundred to 1200 runs with random initial
conditions over which we average.

Cooling towards strong coupling.—Consider first the
evolution of the coupling parameter �ðtÞ which we com-
pute from an instantaneous temperature kBTðtÞ ¼
2EkinðtÞ=3N [23]. Figure 1 shows that �ðtÞ increases con-
tinuously, reaching the value 125 within !0t � 35 [24].
The increase of �ðtÞ is accompanied by weak oscillations
and is only marginally affected by �; cf. left column. In
contrast, the influence of friction is more apparent: an
increase of � leads to an increase of the modulation am-
plitude; cf. right column of Fig. 1. For strong friction the
initial growth follows �ðtÞ / expð2�tÞ, which is the ex-
pected behavior for a free particle subject to friction (bal-
listic regime).

Figure 1 also shows a nontrivial dynamics of the con-
finement (Epot) and interaction energy (Eint) during the

crystallization. While Epot decreases, due to compression

of the cluster, Eint increases due to the formation of corre-
lations. The relative gain (loss) of interaction (confine-
ment) energy increases with screening. Epot and Eint

exhibit much more pronounced oscillatory modulations
than �ðtÞ which are determined by dissipation. While for
�=!0 ¼ 0:2 only small oscillations occur, for �=!0 ¼ 0:5
an overshooting of Epot is observed which reaches its

maximum for �=!0 ¼ 1. Upon further increase of � the
oscillations vanish.
The origin of the oscillations is easy to understand.

When the heating is turned off the amplitude of the random
force is reduced by �f0 ¼

ffiffiffiffiffiffiffiffiffi
�iTi

p � ffiffiffiffiffiffiffiffiffi
�Tn

p
, giving rise to a

rapid radial contraction of the cluster which excites a
monopole oscillation. An increase of � leads to a faster
loss of kinetic energy and a stronger contraction, explain-
ing the larger oscillation amplitude. For � * 2!0 the
oscillation is overdamped and the amplitude decreases,
whereas for � � !0, �f0 is small and the system
smoothly evolves from one equilibrium state to another.
Therefore, there exists a maximum in the oscillation am-
plitude observed at � � !0. Let us now analyze the oscil-
lation frequency. To this end we compute an instantaneous
frequency !�ð½ti þ tiþ1�=2Þ from two successive minima
or maxima of the potential energy at ti and tiþ1; see left
part of Fig. 2. After a few cycles the frequency saturates
and the oscillations correspond to a damped normal mode
of the new equilibrium state. The intrinsic normal mode
frequency ! (of the dissipationless system), right part of

Fig. 2, is computed via !� ¼ ð!2 � �2=4Þ1=2 [25]. For
Coulomb interaction ! agrees with the breathing fre-

quency !br¼
ffiffiffi
3

p
!0 [14], whereas in the case of finite

screening it depends on �. In the right-hand part of
Fig. 2 we also display an analytical result for !brð�R0Þ de-
rived for a homogeneous Yukawa sphere [26] which is ac-
curate at low screening. The normalized radius �R0 is com-
puted from a mean-field theory [27,28]; see Eq. (3) below.
Time-dependent density profile.—The evolution of the

radial density profile is shown in Fig. 3. In the initial
weakly coupled state (�i ¼ 0:2) the density is monotoni-
cally decaying and is well described by the Boltzmann
factor, neffðrÞ / exp½�VeffðrÞ=kBTi�, where Veff denotes
the sum of confinement and mean-field potential [27]. As

FIG. 1 (color online). Time dependence of the kinetic, poten-
tial, and interaction energy for N ¼ 400. For the sake of clarity
the graphs for different parameters are shifted by
�ð!0tÞ ¼ 5 (left) and �ð�tÞ ¼ 1:5 (right). Left: Influence of
screening for �=!0 ¼ 0:2 and �a ¼ 0:6; 0:4; 0:2; 0 (from left to
right). Right: Influence of the damping rate for �a ¼ 0:6 and
�=!0 ¼ 0:2; 0:5; 1; 2:5. Note the different scaling of the time
axes. Potential and interaction energy are normalized to the
equilibrium energies at �i ¼ 0:2.

FIG. 2 (color online). Left: Instantaneous oscillation fre-
quency of Epot (cf. Fig. 1) for various � at �=!0 ¼ 0:1.

Horizontal lines denote the mean frequency in the interval 35 �
!0t � 50. Right: Mean frequency (corrected for friction, see
text) compared to the analytical expression of Ref. [26].
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the kinetic energy drops the system approaches the strong
coupling regime with its characteristic shell structure. In
the case of Coulomb interaction [3(a) and 3(d)] the first
shell appears around the time !0t � 10, at the cluster
boundary [19]. Only upon further cooling [increase of
�ðtÞ] shells form one after another in the direction of the
trap center after almost constant time intervals; cf. dashed
line in Fig. 3(d). The situation is different in the case of
Yukawa interaction. While shell formation again starts at
the edge, inner shells form more rapidly, cf. dashed line in
Fig. 3(e), and at �a ¼ 2 [Fig. 3(f)], the inner shells emerge
almost simultaneously.

This sequence of shell formation is in striking contrast to
the one observed in expanding laser-cooled plasmas [18]
where shells emerge in the center, which was attributed to
an increased density in the core. In fact, the mean density
profile �nðrÞ allows one to define a local coupling parameter
��ðrÞ � �nðrÞ1=3, and it is tempting to expect shell formation

to start at a radius where ��ðrÞ has its maximum. Our results
allow us to verify this hypothesis. During the initial phase,
0 � !0t & 10, �n evolves from the Boltzmann factor,
neffðrÞ, to a (still) monotonic profile, cf. Figs. 3(a)–3(c),
which is very well described by the zero-temperature
mean-field result �n0 given by [27]

�n 0ðr; NÞ ¼ ½�VðrÞ � �2VðrÞ þ �2�ðNÞ�=4�q2; (3)

where �ðNÞ is the chemical potential, except for a slightly
smoother decay at the edge. Note that Eq. (3) exhibits a
finite density step �nðR0Þ at some maximum radius R0

[ �n0ðr; NÞ � 0 for r 	 R0] which emerges in our simula-
tions rapidly, within !0t & 10.
In the Coulomb case [Fig. 3(a)], �nðrÞ is almost constant

for !0t & 10, with a slight decay towards the edge, in
agreement with Eq. (3) which predicts a constant density
for r � R0 ¼ 10:6a. Nevertheless, shells appear at very
different moments starting at the edge, where the density is
smallest. For �a ¼ 2, the mean density decreases even

stronger, ��ðRÞ= ��ð0Þ � ð1=5Þ1=3, cf. Fig. 3(c), but even
here shells form at the edge first, in contrast to the above
expectation. In fact, just prior to formation of the first shell
around !0t� 10 the coupling parameter �ðtÞ approaches
10, cf. Fig. 1, where the mean-field description fails and
correlations become important. With increasing �ðtÞ the
discrete nature of the particles begins to manifest itself
leading to formation of a (correlation) ‘‘hole’’ around each
particle which cannot be occupied by others. This separa-
tion of particles in radial (and tangential) direction and an
overall expansion of the cluster cause an increase of Epot

proportional to the number of particles in the edge layer,
Nedge ��nðRÞ. The system reduces this energy by sponta-

neously restructuring such that particles from the edge are
accumulated at a smaller distance—the outer shell forms.
The formation of the inner shells is triggered by the con-
tinuing increase of � in the center. The substantial accel-
eration of shell formation with increasing � is explained by
the inward force exerted by the particles on the outer shell
[27] which is negligible in the Coulomb case (Faraday cage
effect).
Effect of the confinement potential.—The different crys-

tallization behavior observed in the expanding neutral
plasma can be traced to a different confinement potential.

FIG. 4 (color online). Equilibrium density profiles for different
trap potentials and various temperatures: (a) quartic confinement
V4, (b) linear confinement V1. (c),(d) Harmonic potential with
blocked core, ~V2, rw=a ¼ 2, for Coulomb (c) and Yukawa

interaction with �a ¼ 1 (d). Units are r1 ¼ q=
ffiffiffiffiffi
c1

p
, r4 ¼ffiffiffiffiffiffiffiffiffiffiffiffi

q2=c4
5
p

, and T1;4 ¼ q2=ðr1;4kBÞ.

FIG. 3 (color). Right: Evolution of the density profile for N ¼
1200 with �=!0 ¼ 0:2, black dashed line connects the approxi-
mate times and positions at which the shells emerge.
Left: Snapshots of nðrÞ at !0t ¼ 0; 15; 30 (oscillations grow
with time) together with solution of Eq. (3), mean-field (MF),
black dots. From top to bottom row: �a ¼ 0; 0:6; 2.
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There, the ions are confined by the mean-field potential of
the electrons [18] which is Coulomb-like (except for the
center), i.e., VðrÞ � r�1. Consequently the mean density
profile, prior to shell formation, exhibits a drastic increase
towards the center, �nðrÞ � r�3, cf. Eq. (3), and a vanishing
density step �nðRÞ ! 0. The latter arises from vanishing
of VðrÞ for r ! 1, i.e., ions with a finite kinetic energy
cannot be confined; instead of accumulating particles in a
shell, the system expands. The strong increase of �nðrÞ
towards the center then explains the observed dynamics.
We now further verify the governing role of the confine-
ment potential for the dynamics of shell formation. To this
end we analyze the equilibrium density profile [29] for
different temperatures by performing thermodynamic
Monte Carlo simulations for a finite number of particles
trapped by different potentials. According to Eq. (3) a
potential VðrÞ / r� yields a mean density �nðrÞ / r��2,
for � ¼ 0. Figure 4(a) shows results for a quartic potential,
V4ðrÞ ¼ c4r

4=4, where �n0ðrÞ / r2. Here a very large den-
sity step is formed which, together with the radial den-
sity increase, further enhances the shell formation from
the edge, as for the harmonic confinement; cf. Figs. 3(a)
and 3(d). Next, consider a (regularized) linear confinement,

V1ðrÞ ¼ c1½r21 þ r2�1=2, for which �nðrÞ / r�1. While again
the first density maximum emerges at the boundary, strong
modulations of nðrÞ appear near r ¼ 0 at low temperatures,
Fig. 4(b); i.e., crystallization proceeds simultaneously
from the edge and from the center.

Finally, we further modify the confinement by making
the central part of the trap, 0 � r � rw, unaccessible for
the particles by using an infinite wall at r ¼ rw together
with a shifted harmonic potential ~V2ðrÞ � ðr� rwÞ2; cf.
inset of Fig. 4(d). The results for the cases of Coulomb and
Yukawa interaction (�a ¼ 1) are strikingly different; cf.
Figs. 4(c) and 4(d). While in the former case again shell
formation starts at the edge, in the latter the first shell
clearly emerges in the core. The reason is that for
Coulomb interaction, particles at r ¼ rw experience almost
no radial force, whereas for Yukawa interaction charges
located outside do produce an inward force [27] causing
strong particle accumulation at the wall. Not only does this
allow the reversal of the spatial crystallization dynamics,
this is also a situation where qualitatively different behav-
ior should be observable for spherically trapped ions
(Coulomb interaction) and dusty plasmas (screened
interaction).

Summary.—We have studied the transition from a
weakly coupled to a strongly coupled state in a spherically
trapped dusty plasma in a scenario which can be realized
experimentally. The initial relaxation phase, !0t & 10, is
characterized by formation of a density step�n at the edge
and, for low friction, excitation of a breathing oscillation
with a �-dependent frequency. Around the time !0t� 10
shell formation starts at the plasma edge which is a corre-
lation effect arising from the finite density step. For typical

dusty plasma experiments with �a � 0:6 [13] and har-
monic confinement, inner shells are formed one by one
within almost constant time intervals of !0t � 4.
Furthermore, the crystallization dynamics can, to a large
extent, be controlled by the shape of the confinement
potential. In particular, by blocking the central part of the
trap crystallization can be initiated in the center.
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