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The Goos-Hänchen effect is a spatial shift along an interface resulting from an interference effect that

occurs for total internal reflection. This phenomenon was suggested by Sir Isaac Newton, but it was not

until 1947 that the effect was experimentally observed by Goos and Hänchen. We provide the first direct,

absolute, experimental determination of the Goos-Hänchen shift for a particle experiencing a potential

well as required by quantum mechanics: namely, wave-particle duality. Here, the particle is a spin-

polarized neutron reflecting from a film of magnetized material. We detect the effect through a subtle

change in polarization of the neutron. Here, we demonstrate, through experiment and theory, that neutrons

do exhibit the Goos-Hänchen effect and postulate that the associated time shift should also be observable.

DOI: 10.1103/PhysRevLett.104.010401 PACS numbers: 03.75.Be, 03.65.Ta, 03.75.Dg, 42.50.Xa

The longitudinal Goos-Hänchen shift is well known for
photons. It was Sir Isaac Newton [1] who suggested a beam
of light, specularly reflected at a glass-vacuum surface, first
penetrates into the vacuum and then is attracted back
toward the glass surface. The result is a shift of the incident
ray over some distance along the surface of the interface as
shown in Fig. 1. F. Goos and H. Hänchen were the first to
observe such a shift experimentally [2,3]. Since then, this
shift for electromagnetic waves have been subject of fur-
ther studies [4,5], including also transverse shifts, known
as the Imbert-Fedorov shift [6]. Because of the particle-
wave duality, as advocated by quantum mechanics, such a
shift should also be observable for particles reflecting from
a potential well. As a neutron possesses a magnetic mo-
ment, the neutron wave function is represented by a spinor,
consisting of an up-spin wave function and a down-spin
wave function. The Goos-Hänchen shift for an up-spin
wave function is different from the one for a down-spin
wave function due to the difference in potential well for the
spin up and down wave functions. The difference in these
shifts results in a different polarization after reflection from
the mirror with respect to the polarization before reflection.

For neutrons, experimental possibilities have been dis-
cussed [7,8] previously, but to the best of the authors’
knowledge, these experiments have not been performed.
The measurements described by Pleshanov [9] are indirect
measurements of the shift, determining the effect on the
reflectivity, similar as the ones described by Toperverg
[10]. Experimentally, to observe this change in polarization
requires a high neutron flux instrument with excellent
control and characterization of the neutron spin polariza-
tion. The development of the spin-echo neutron reflec-
tometer OffSpec [11,12] at ISIS second target station
enables measurement of the difference in Goos-Hänchen

shift via the direct and unambiguous measurement of the
polarization change during reflection.
The practical importance of the shift for neutrons is for

the design of neutron waveguides as discussed by
Rohwedder [13] similar to Pillon [14] and it can also be
used to study the coherence properties of a neutron beam,
as will be discussed later.
For particle-wave functions, where interaction with

magnetic and electric forces can not be ignored, Dirac
[15] was able to reduce the time-dependent Schrödinger
equation using two linear dependent solutions�þð~r; tÞ and
��ð ~r; tÞ representing the up-spin state and down-spin state
part of the wave function. The relevant terms of the
Hamiltonian are

Ĥð~r; tÞ ¼ � @
2

2m
r2 þ Vð~rÞ ��n�̂ � ~Bð ~r; tÞ; (1)

where m is the neutron mass, �̂ the Pauli spin matrix
vector, Vð ~rÞ is the complex nuclear optical potential,�n ¼
�60:308 neV=T the neutron magnetic moment, and ~Bð~r; tÞ
the magnetic flux density [16]. The quantity �nBð~r; tÞ is
known as the Zeeman energy as it describes the energy
gain or loss of a neutron experiencing a magnetic flux
density. The Zeeman energy must be compared to the
total kinetic energy of the neutron given by @

2k2=2m
( � 20:5 meV for neutrons with a wavelength in vacuum,
� of 0.2 nm), where k is the wave number of the neutron
equal to 2�=�. For moderate values of the magnetic flux
density of about 0.3 T, the Zeeman energy is 6 orders of
magnitude smaller than the kinetic energy.
For reflection from a smooth interface, as shown in

Fig. 1, the reflected wave function can be expressed in
the incoming wave function and a reflection coefficient. If
the scattering potential Vð~rÞ and the magnetic flux density
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~Bð ~rÞ are statistically stationary and only a function of
the direction perpendicular to the sample surface (here
the y direction) the three-dimensional time-dependent
Schrödinger equation can be reduced to a one-dimensional
time-independent equation. Because the Hamiltonian only
contains time-independent terms, the wave function can be
split into a time-dependent and time-independent part.
Further, the time-independent part reduces to two homo-
geneous second order differential equations for x and z. For
the general case, the solution for the remaining coupled
nonhomogeneous differential equations for y is discussed
elsewhere (for instance, [17]). Here, the situation is dis-
cussed where the neutron reflects from the vacuum-
substrate interface and the magnetic flux density is parallel
to the z direction (hence, parallel to the interface and
perpendicular to the neutron beam direction), where for
y � 0: VðyÞ ¼ Vn, the nuclear scattering potential of the

substrate and ~BðyÞ is a vector in the z direction with length
Bs, the magnetic flux density inside the substrate, while for
y > 0 both quantities are 0. The guide field outside the

sample can be ignored. In this case, �̂ � ~BðyÞ ¼ BðyÞ�̂z and
the two coupled differential equations can be reduced to
two independent differential equations. The general solu-
tions for these are for y > 0,

c�
ky
ðyÞ ¼ ��ðkyÞðeikyy þ ��ðkyÞe�ikyyÞ (2)

where ky is the component of the wave vector in the y

direction, ��ðkyÞ ¼ ðky � ks;�y Þ=ðky þ ks;�y Þ are the corre-

sponding (Fresnel) reflection coefficients, where ks;�y ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2y � ðk�c Þ2

q
, is the wave vector component in the y direc-

tion inside the substrate for up (þ ) or down (� ) spin
state. The corresponding critical wave vector is given by

k�c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m
@
2 ðVn � VmÞ

q
, where Vm ¼ �nBs is the magnetic

scattering potential. The first term of the right-hand side of
Eq. (2) is interpreted as the incident neutron wave function

and the second term as the reflected wave function. At the
interface, the reflected wave function can be expressed in
terms of the incident wave function according to
c�

ky
ð0Þout ¼ ��ðkyÞc�

ky
ð0Þin. Here, the fact was used that

no spin flip occurs at the interface as the magnetic flux
density is parallel to the surface (z direction). Hence, the
up-spin state and down-spin state are reflected indepen-
dently according to the Fresnel reflection law. As long as
the kinetic energy, Ek ¼ @

2k2y=2m associated with the per-

pendicular component of the wave vector ky is larger than

the scattering potential of the substrate, both ky and k
s;�
y are

real; hence, the reflection coefficient is real and the phase
of the reflected beam is equal to the phase of the incident
beam. However, as soon as this kinetic energy is smaller

than the scattering potential, ky < k�c , k
s;�
y becomes imagi-

nary and total external reflection occurs. The amplitude of
the reflection coefficient is 1, but the phase of the reflected
beam is shifted by �� ¼ �i lnð��Þ ¼ 2 arccosðky=k�c Þ.
This is the phase shift a plane wave experiences when
reflecting from the interface. Such a phase shift can be
translated into a spatial displacement for a beam of finite
size. Following the reasoning of Renard [18], based on flux
conservation for light or particles, the Goos-Hänchen shift
can be calculated as

�� ¼ k

ðk�c Þ2
2kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk�c Þ2 � k2y

q : (3)

This was later confirmed by theoretical calculations for a
light beam of limited dimensions by Lotsch [19]. This shift
as function of ky is shown in Fig. 2 for fully magnetized

iron (Bs ¼ 2:13 T, so kþc ¼ 0:128 nm�1 and k�c ¼
0:062 nm�1). Close to the critical edges, the shifts are of
the order of tens of �m.

FIG. 2 (color online). Goos-Hänchen shift, � along the inter-
face for an incident angle of 2 mrad as function of the wave
vector component perpendicular to the surface, ky for up (full

line) and down (dashed line) spin state for fully magnetized iron.
Inset: Splitting, s of the neutron wave function at the interface.

FIG. 1 (color online). Reflection of a plane wave with incident
angle 	 on a substrate boundary at y ¼ 0 indicating the Goos-
Hänchen shift, � . Inset: nuclear Vn and magnetic �Vm, scatter-
ing potential and kinetic energy Ek associated with neutron
velocity component perpendicular to the surface.
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The transmission of the beam over this distance through
the substrate material with an absorption (represented by
the imaginary part of the potential, �i�ak@

2=2m, where
�a is the macroscopic absorption cross section [16]) can be
calculated by expð���aÞ. This is the same as the reduction
of the reflectivity due to the imaginary part of the potential.
This method was used by Pleshanov [9].

As was already noted by Mezei in 1980 [20], the polar-
ization of a neutron beam can be interpreted as the degree
of coherence between the wave functions representing the
two spin states of neutron. Then, for a statistically sta-
tionary beam, the local polarization is defined as

Pjð~rÞ ¼

�
ð�þð ~r; tÞ���ð ~r; tÞ�Þ�̂j

�þð~r; tÞ
��ð~r; tÞ

� ��
t

h�þð~r; tÞ�þð ~r; tÞ�it þ h��ð ~r; tÞ��ð~r; tÞ�it ; (4)

where the index j denotes the x, y, or z component, hxðtÞit
denotes the time average of xðtÞ, and X� the complex
conjugated value of the function X. ��ðkyÞ can be rewritten
as ei½
ðkyÞ=2�ef�i½�ðkyÞ=2�g where 
ðkyÞ ¼ �þðkyÞ þ��ðkyÞ
and �ðkyÞ ¼ �þðkyÞ ���ðkyÞ. Using the above definition
of the polarization vector, the matrix can be interpreted as a
Larmor precession over an angle �ðkyÞ of the polarization
vector, the so-called Larmor pseudo precession [10].
Hence, the difference in phase shift between the up- and
down-spin state can be determined by measuring the po-
larization change of the incident beam after total reflection
at the sample surface. So, the only specific needs to mea-
sure the effect with neutrons is a neutron reflectometer with
a possibility to measure the polarization change. OffSpec
[11] is able to accurately measure this polarization change.
Under the condition that the spin echo of the experiment
does not change while changing the sample for a reference
sample, the ratio of the measured spin-echo signal (P) with
a sample and with a reference (P0) is simply given by

P

P0
¼ cosN�ðkyÞ; (5)

where N is the number of reflections (at each reflection the
shift is the same).

The most obvious sample to use would be a flat polished
iron surface. However, a relatively strong magnetic field is
needed to fully magnetize iron which would make it more
difficult to have a well-defined spin echo. Therefore, a
layer of 3�m Permalloy (Fe0:2Ni0:8) was deposited onto
a silicon wafer strip with dimensions of 20	 100	
0:8 mm3. The Permalloy layer is thin and fully magnetized
in the guide field of the neutrons; therefore, the magnetic
flux is parallel to the z direction. However, small deviations
well below 0.1 rad from this direction are of no conse-
quence as they influence the polarization as a cosine effect.
Any sample inhomogeneity would introduce depolariza-
tion effects, which have not been observed. A quartz plate
(3 mm thickness) was used as a reference.

The ratio of the measured polarization (sample divided
by reference) as a function of wave vector is shown in

Fig. 3. The upper panel corresponds to a single reflection
and the lower panel to a double reflection. The theoretical
values were obtained by using literature values for the
nuclear optical potential and saturation magnetization
(1 T); hence, kþc ¼ 0:120 nm�1 and k�c ¼ 0:092 nm�1.
The single reflection was obtained with an incident angle,
	 of 5.0 mrad and divergence (FWHM) of 0.35 mrad (due
to the waviness of the sample and the resolution of the
detector used). As can be inferred from Fig. 2, the shift of
the down spin is much larger than the shift of the up one;
hence, from the definition of � and Eq. (3), it can be shown
that �� � 2½1= sinð�=2Þ � sinð�=2Þ�=ðk�c sin	Þ, which
yields for ky ¼ 0:06 nm, �� ¼ 2:4 �m and for ky ¼
0:09 nm, �� ¼ 20 �m. For �þ, these values are 1:0 and
2:8 �m, respectively. The double reflection was obtained
by reflection in series, where the first reflection angle was
4.05 mrad and the second angle 3.73 mrad. The angular
divergence (FWHM) of 0.17 mrad is smaller than before;
as for the double reflection, the samples were rotated by
90 degrees, having a much smaller size in the beam direc-
tion. This reduces the influence of the waviness of the
sample on the angular divergence of the beam. The single

FIG. 3 (color online). Measured normalized polarization,
P=P0 as function of perpendicular wave vector, ky representing

the Larmor pseudo precession due to the Goos-Hänchen shift
along the interface for a single (top) and double (bottom)
reflection from a Permalloy thin film. The black lines represent
the theoretical predictions. The (red) dashed line in the lower
graph represents a simulation (see text).

PRL 104, 010401 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending

8 JANUARY 2010

010401-3



reflection data agree well with the theoretical predictions
within the measurement accuracy. The double reflection
data show, by becoming less than zero, that the shift does
result in a rotation of the neutron polarization and is not a
loss of spin-echo signal. The theoretical calculations pre-
dict the correct amount of polarization rotation (the mini-
mum for the measurement and theory is the same), but
there is deviation from the measured data that can be
attributed to the more complex double reflection geometry
(two slightly different angles) and a small magnetic field
density anisotropy in the sample (the sample was rotated
90 degrees). Further, it is possible that the spin echo for the
empty beam is not perfect, resulting in a wavelength
dependent shift. This shift should be added to the shift in
Eq. (5). If a simulation is performed taking these effects
into account, the (red) dashed line is obtained, agreeing
with the measured data. In the simulation, the measured
angle and a block-shaped angular-resolution function were
used. The magnetic field density was increased to 1.2 T, not
unusual for this type of material. The wavelength depen-
dent shift was taken as �1 rad=nm. This introduces the
oscillations at small ky (large wavelength).

The Goos-Hänchen shifts of the up- and down-spin
states along the surface of the sample are different (see
also inset in Fig. 2). Hence, after reflection, the up- and
down-spin states are split in space. The amount of splitting,
s is equal to the difference in the Goos-Hänchen shift
multiplied by the incident angle. For a single reflection,
this splitting can increase up to s ¼ 100 nm. The trans-
verse coherence length of the neutron beam is determined
by the instrument configuration. For instance, the trans-
verse coherence length reduces with increased diaphragm
widths. Hence, by adjusting the instrumental configuration,
the transverse coherence length of the neutron beam can be
made less than the beam splitting induced by the Goos-
Hänchen shift. Then, the resulting beam polarization will
be less than the predicted value according to Eq. (5). When
the diaphragm settings are reduced, the transverse coher-
ence length increases and the resulting beam polarization
reaches Eq. (5) again. However, when the interference
between the up- and down-spin state is only determined
by the intrinsic properties of the neutron, such measure-
ments could provide a lower limit for the coherence length
of the neutron as a wave packet.

For photons, the Goos-Hänchen shifts are accompanied
by a delay time [21]. For neutrons, this delay time can be
estimated by dividing the Goos-Hänchen shift by the neu-
tron velocity [22] which gives

�� ¼ m

@ðk�c Þ2
2kyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðk�c Þ2 � k2y

q : (6)

For the sample considered here, this is of the order of
0:1 �s close to the critical edge. This value can be greatly
enhanced as, according to the above formula, it is propor-
tional to the inverse of the scattering potential. Hence, by
reducing the scattering potential, the delay time can be

increased. This can be understood as the neutrons taking
more time to bounce back from a surface when the forces
on the neutron are less strong. The OffSpec instrument is
able to measure both spatial splitting and time delay by
adjusting the instrumental configuration. This creates the
possibility to check if the delay time can be inferred from
the shift according to the above assumptions.
In conclusion, the difference in the Goos-Hänchen shifts

for spin-polarized neutrons during reflection has been ex-
perimentally observed and is well described within a sim-
ple theoretical framework. The results suggest that the
accompanying shift in time should also be observable.
Moreover, the observed spatial shift can be used to accu-
rately determine the coherence properties of the neutron
beam. The experiment sets the basis for new extended
studies using neutron quantum mechanics for an increased
range of topics.
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