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Time-dependent external perturbations provide powerful probes of the function of molecular machines.

Here we study biological proton pumping in an oscillating electric field. The protein cytochrome c oxidase

is the main energy transducer in aerobic life, converting chemical energy into an electric potential by

pumping protons across a membrane. With the help of master-equation descriptions that recover the key

thermodynamic and kinetic properties of this biological ‘‘fuel cell,’’ we show that the proton pumping effi-

ciency and the electronic currents in steady state depend significantly on the frequency and amplitude of

the applied field, allowing us to distinguish between different microscopic mechanisms of the machine. A

spectral analysis reveals dominant reaction steps consistent with an electron-gated pumping mechanism.

DOI: 10.1103/PhysRevLett.103.268102 PACS numbers: 87.16.dp, 87.15.hj

Aerobic life is sustained by a reaction analogous to that
of a hydrogen fuel cell. The reduction of oxygen to water,
O2 þ 4Hþ þ 4e� ! 2H2O, is catalyzed by the protein
cytochrome c oxidase (CcO). This reaction generates the
electric potential of �200 mV across the inner mitochon-
drial (or bacterial) membrane that powers the production of
ATP (adenosine triphosphate), the fuel of living cells
[Fig. 1(a)] [1–7]. CcO takes up four protons from the
negative (N) side of the membrane and four electrons
from the positive (P) side to reduce one oxygen molecule
to form two water molecules (Fig. 1). Part of the�2 eV of
chemical energy released during this reaction is used to
translocate four protons from the N to the P side of the
membrane against an opposing potential, resulting in a net
transport of 8 proton charges across the membrane with a
thermodynamic efficiency of �8� 200 meV=2 eV ¼
80% (Fig. 1). Unlike molecular motors and transporters
that undergo large conformational changes, the proton-
pump function in CcO is achieved without large-scale
changes in protein structure [8], and its molecular mecha-
nism has remained elusive.

Here, we use a frequency-dependent bias voltage to
probe the molecular mechanism of the proton pump. We
employ a stochastic-kinetic approach, used widely in stud-
ies of molecular machines [9–16]. The effects of time-
varying electric fields are relevant not only physiologically
because of the constantly fluctuating membrane potentials
in cells [17,18], but also because they provide a unique
window into the function of molecular machines [19–22].
The frequency dependence of the measurable proton and
electron currents [23] allows us to pinpoint key reaction
steps in the pumping function of CcO, and to distinguish
between competing models.

Our calculations are based on a detailed master-equation
description of CcO that is consistent with basic physical
principles and the known structure of CcO, and reproduces
the rates and equilibria of intermediate reaction steps [24].
The proton and electron conduction pathways of the real

enzyme are represented by three charge sites. The two
proton and one electron sites, each being either empty or
singly occupied, are kinetically connected to the two sides
of the membrane and to each other [Fig. 1(b)]. Individual
transitions satisfy detailed balance between forward and

FIG. 1 (color online). Proton pumping machine. (a) Schematic
of CcO and ATP synthase function. Electron transfer from
cytochrome c via CuA and heme a to the binuclear center
(heme a3 and CuB) is indicated in red (medium gray). Light
blue (light gray) arrows indicate proton translocation, including
uptake of protons from the N side of the membrane and release
of pumped protons on the P side. Dark blue (dark gray) arrows
indicate the redox chemical reaction. ATP synthase generates an
ATP from ADP (adenosine diphosphate) and Pi driven by the
proton gradient. (b) Kinetic scheme of the three-site model of
CcO. Circles and squares show proton and electron sites, re-
spectively. Arrows indicate proton- (light blue [light gray]) and
electron-transfer reactions (red [medium gray]). The dark blue
(dark gray) arrow denotes the product formation. (c) Reaction
diagram of the three-site model. The vertices of the cube corre-
spond to the kinetic states of the model where ‘‘þ’’ represents a
filled proton site, ‘‘�’’ a filled electron site, and ‘‘0’’ an empty
site. States are labeled in roman numerals according to the binary
code of their site occupancies. Lines between vertices indicate
allowed transitions with the same color scheme as in (a).
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backward rates, consistent with the second law of thermo-
dynamics. Oxygen reduction is described by a product
formation step that requires simultaneously occupied elec-
tron and proton-1 sites [blue arrow in Fig. 1(b)]. Detailed
balance is broken during product formation, with reactant
and product concentrations held steady and the backward
reaction (i.e., product breakup) slowed by the free energy
gain from the chemical reaction. As a result, the system is
driven out of equilibrium toward a steady state with con-
stant fluxes of electrons, protons, and products.

The dynamics of the populations PðtÞ ¼
ðP1ðtÞ; P2ðtÞ; . . . ; P8ðtÞÞT of the 23 ¼ 8 microscopic states
is governed by a master equation dPðtÞ=dt ¼ KPðtÞ, where
K ¼ ½kij� is the 8� 8 rate matrix corresponding to the

reaction diagram in Fig. 1(c), with kij being the rate

coefficient for transitions from state j to i, and kii ¼
�P

j�ikji. The forward and backward rates (except for

the product formation step) are written as kji ¼
�ji exp½�ðGj �GiÞ=2kBT� to satisfy detailed balance,

kji=kij ¼ exp½�ðGj �GiÞ=kBT�. Gi is the free energy of

state i, and �ij ¼ �ji is the intrinsic rate coefficient in the

absence of a driving force (i.e., Gi ¼ Gj). For simplicity,

we assume that the free energy difference is balanced
between the forward and backward reactions, resulting in
the factor 1=2 in the exponent. The free energy of state i
contains 1-body and 2-body contributions,

Gi¼
X3

�¼1

xðiÞ�
�

G0
�þ

q�z�Vm

L

�

þ X2

�¼1

X3

�¼�þ1

xðiÞ� xðiÞ� ���; (1)

where G0
� is the intrinsic free energy to occupy site � with

all other sites empty, xðiÞ� is an occupancy indicator equal to
1 (0) if site � is occupied (empty) in state i, ��� is the

electrostatic coupling between sites � and �, q� ¼ �e is

the charge at site �, z� is the distance from the N side of

the membrane to site �, L is the membrane width, and
Vm ¼ VP � VN is the membrane potential. Here we as-
sume a constant electric field Vm=L inside the membrane.

Product formation [steps V ! 0 and VII ! II in
Fig. 1(c)] is driven by a free energy gain of �Gp ¼
0:5 eV, corresponding to � 1=4 of the energy released
by the formation of two water molecules from one oxygen
molecule. In the master equation, we assume that this
driving force is realized by multiplying the backward rates
of product formation by expð��Gp=kBTÞ.

Previous studies [24,25] showed that the three-site ki-
netic models are the simplest description of CcO that can
pump protons across the membrane. These models achieve
the stoichiometric efficiency seen in experiments [1,7] of
� � 1 proton pumped per electron consumed against time-
independent, opposing membrane potentials, Vm > 0. Here
we define the pumping efficiency as � ¼ Jpump=Jel where

Jpump and Jel are the average fluxes of protons pumped and

electrons consumed, respectively. Note that � is related to
the thermodynamic efficiency by V0ð1þ �Þ=�Gp.

Our focus here is to study the effects of time-dependent
membrane potentials, VmðtÞ ¼ V0 þ V1 cosð!tÞ, on the
pumping efficiency. V0 is a constant offset voltage, V1 is
the amplitude of the oscillatory bias voltage, and ! its
frequency. Oscillating voltages VmðtÞ are applied to models
constructed previously [24] to satisfy experimental data on
proton and electron affinities, reaction rates, and equilibria,
while pumping protons against constant voltages of V0 >
100 mV. Here, we consider two representative models
[24,26] that differ in their pump mechanism, i.e., in the
order of the reaction steps in their dominant pump cycles:
states I ! V ! VI ! VII ! II ! III ! I for model 1
[pump cycle 5 in Ref. [24]; labels as in Fig. 1(c)], and 0 !
I ! II ! VI ! VII ! V ! 0 for model 2 (pump cycle 2
in Ref. [24]).
Oscillating electric potentials are applied on top of the

base voltages of V0 ¼ 0, V
�¼1=2
0 and V

�¼0
0 , where V

�¼1=2
0

and V�¼0
0 are the membrane voltages at which the pumping

efficiencies are � ¼ 1=2 and 0, respectively, with V1 ¼ 0.
The resulting master equation is periodic with period
2�=!. According to Floquet theory, a quasi-steady state
is established at long times t, and time averages can be
replaced by phase averages [27]. The resulting flux from

state j to i is �Jij ¼ limt!1ð!=2�ÞRtþð2�=!Þ
t Jijð�Þd�,

where JijðtÞ ¼ kijðtÞPjðtÞ � kjiðtÞPiðtÞ is the net flux

from state j to i at time t. The net electron and proton-
pump fluxes, Jel and Jpump, are calculated by summing the

contributions of contributing elementary fluxes Jij (with Jel
being exactly twice the rate of forming product water).
To relate the experimentally measurable frequency de-

pendence of the pumping efficiency and product formation
rate to the underlying microscopic processes of proton and
electron conduction, we combine first- and second-order
perturbation theory with an eigenmode analysis of the
master equation. The Taylor expansion of the time-
dependent rate matrix KðtÞ in terms of V1 is given by
KðtÞ ¼ K0 þ V1K1 cosð!tÞ þ V2

1K2cos
2ð!tÞ=2þOðV3

1 Þ,
whereK0 is the rate matrix of the time-independent system
with V1 ¼ 0, and K1 and K2 are the first and second
derivatives of K with respect to Vm, evaluated at Vm ¼
V0, respectively. The master equation is then solved per-
turbatively for PðtÞ [26]. Up to the leading order in V1, the
probabilities and the corresponding average fluxes can be
written as sums of Lorentzians [28]:

P ðtÞ ¼ P0 þ V1

X

k>1

c R
k

ek
�2
k þ!2

cosð!tþ 	kÞ; (2)

�J ijð!Þ ¼ J0ij þ V2
1

X

k>1

Dij;k

�2
k þ!2

; (3)

where P0 is the steady-state probability vector, J0ij is the

average flux at Vm ¼ V0, and �k and c R
k are the eigenval-

ues and corresponding right eigenvectors of the time-
independent rate matrix K0 ordered such that �1 ¼ 0>
�2 > � � �> �8 (all eigenvalues are real in our models; see
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Ref. [29] for effects of complex eigenvalues). The con-
stants ek, 	k, andDij;k contain terms involving components

of K0, K1 and the left or right eigenvectors of K0 [26].
Figure 2 shows the efficiency � and electron flux Jel of

model 1 calculated from first- and second-order perturba-
tion expansions of PðtÞ as a function of the amplitude V1 of
the oscillatory bias voltage at a frequency of 103 s�1 and
without offset, V0 ¼ 0. The efficiency decreases monotoni-
cally to about 90% as the amplitude increases to V1 ¼
100 mV. Interestingly, the electron flux, and thus the rate
of product formation, increases with the oscillating volt-
age. This increase reflects the nonlinear dependence of the
electron flux on the membrane potential, with gains in the
electron flux under low potential outweighing losses under
high potential. Based on the excellent agreement with the
results of practically exact numerical integration up to
V1 ¼ 60 mV, we use second-order perturbation theory
for the following calculations, unless stated otherwise.

Figure 3 shows that both the pumping efficiency and the
electron flux depend strongly on frequency, even at a small
amplitude of V1 ¼ 50 mV of the oscillatory bias. The
effect of the oscillatory voltage becomes more pronounced

as the offset voltage is increased from V0 ¼ 0 to V
�¼1=2
0 ,

and V
�¼0
0 . Remarkably, the two models show distinct

frequency dependences at all three offset voltages. At
zero offset (V0 ¼ 0; top panels), the efficiency in model 2
hardly changes with the frequency, whereas the efficiency
drops by about 13% for model 1 as ! ! 0. In contrast, the
electron flux (or turnover rate) is insensitive to ! for
model 1, whereas it drops by more than 15% for model 2

at low frequency. At nonzero offset voltages (V�¼1=2
0 and

V
�¼0
0 ) the efficiencies are nonmonotonic in!, whereas the

electron fluxes monotonically decrease with increasing !.

In particular, at V�¼0
0 model 1 loses the pumping ability for

! & 108 s�1 whereas model 2 pumps protons in the entire
frequency range.

For both the efficiency and the electron flux, the
two limits of low (! ! 0) and high frequency (! ! 1)
differ from each other and from the value for a time-
independent voltage (i.e., V1 ¼ 0). This difference is evi-

dent, e.g., in the bottom left panel of Fig. 3, where the ef-
ficiency of the pump without oscillatory voltage is �¼0
by construction. In the adiabatic limit, ! ! 0, the fluxes
can be averaged over one period with time-independent

voltages: �Jijð!!0Þ¼RV0þV1

V0�V1
JijðVÞpðVÞdV, where

pðVÞ ¼ ½1� ðV � V0Þ2=V2
1 ��1=2=

RV0þV1

V0�V1
½1� ðV0 � V0Þ2=

V2
1 ��1=2dV0 is a weight factor arising from the Jacobian

associated with changing variables from time t to voltage
V. At the other extreme, when ! ! 1, the system dynam-
ics is governed by time-independent effective rate coeffi-
cients averaged over a period, �kijð! ! 1Þ ¼
RV0þV1

V0�V1
kijðVÞpðVÞdV.

The eigenmode analysis can also be used to extract
information about the mechanisms of the molecular ma-
chine. Perturbation theory, Eqs. (2) and (3), allows us to
identify the contributions of individual eigenmodes to the
average fluxes. We find that in model 1 the coupling to the
fifth eigenmode with the eigenvalue ��5 � 108 s�1 re-
sults in the greatest change in the efficiency as a function of
the frequency. The corresponding right eigenvector c R

5 has

two dominant elements at states Vand VII of opposite sign.
As a consequence, the populations of states Vðþ0�Þ and
VIIðþ þ�Þ oscillate with a � 180 degree phase shift
around their respective steady-state values, according to
Eq. (2). The shift in population from state V to VII is
achieved by an internal proton transfer (PT) (V ! VI)
with a rate coefficient of � 108 s�1, facilitated by the
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FIG. 2. (a) Pumping efficiency and (b) electron flux versus
voltage amplitude, V1, at ! ¼ 103 s�1 for model 1 (symbols:
numerical integration; lines: perturbation theory).
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FIG. 3. Pumping efficiency (left) and electron flux (right) as a
function of frequency ! at V1 ¼ 50 mV and V0 ¼ 0, V0ð� ¼ 1

2Þ,
and V0ð� ¼ 0Þ (top to bottom). Arrows indicate the efficiency
and electron flux for a time-independent voltage (V1 ¼ 0).
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presence of an electron in site 3. This PT is followed by a
fast proton uptake (VI ! VII, rate � 1010 s�1).

In model 2, the second and sixth eigenmodes dominate
the frequency dependence of the efficiency, with j�2j �
105 and j�6j � 107 s�1, respectively. These two eigen-
modes shift the population from state Iðþ00Þ to
VIð0þ�Þ and VIIðþ þ�Þ, respectively. These shifts
are again achieved by the internal PT (I ! II), now in
the absence of an electron, but followed by an electron
uptake (II ! VI) and the protonation of site 1 (VI ! VII).
Unlike model 1, electron uptake is the fastest reaction with
a rate of �1011 s�1, while the PT and the protonation of
site 1 occur on a time scale of �106 s�1.

The response of the proton-pump currents to oscillating
electric fields (Fig. 3) is reminiscent of stochastic reso-
nance phenomena observed in many areas of physics and
biology, including optical, electronic and magnetic sys-
tems, neuronal circuits [27], and biochemical reaction net-
works [29]. Here the output (i.e., the efficiency or electric
current) is amplified in the presence of a weak coherent
input (i.e., an oscillating voltage) by the assistance of noise
inherent in the stochastic systems. Noise in membrane
potentials [17] has been studied for neurons [18], but little
is known for organelles such as mitochondria. Remarkably,
oscillatory voltages enhance the pumping efficiency of one
of the models essentially over the entire frequency regime,
but reduce the efficiency of the other (Fig. 3 left panels).
Model 2 thus appears to be better adapted to noise.

The strong effects of oscillating electric fields on a
biological proton pump, as found here, are more complex
than those in simple bistable systems studied extensively
by theory and experiment [27]. This complex response to
oscillating fields reveals details about the microscopic
processes of coupled proton and electron transfer events
and their contributions to the proton-pump function.
Different proton-pump mechanisms can be identified by
the characteristic frequency dependence of their pump and
turnover fluxes. Measurements of these fluxes, for instance
by using CcO embedded into surface-attached membranes
under controlled voltage [23], will provide important guid-
ance toward a full molecular understanding of the machine
that powers aerobic life. The same formalism used here to
characterize a proton pump can be used in studies of other
molecular machines, such as molecular motors under os-
cillatory force load.
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