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The spin-glass transition in a magnetic field is studied both in and out of the limit of validity of mean-

field theory on a diluted one dimensional chain of Ising spins where exchange bonds occur with a

probability decaying as the inverse power of the distance. Varying the power in this long-range model

corresponds, in a one-to-one relationship, to changing the dimension in spin-glass short-range models.

Evidence for a spin-glass transition in a magnetic field is found also for systems whose equivalent

dimension is below the upper critical dimension in a zero magnetic field.
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Introduction.—Even though 30 years have passed since
the spin-glass (SG) phase in the presence of an external
magnetic field has been characterized in mean-field (MF)
theory [1], its existence in realistic finite-dimensional sys-
tems is not yet established. In most common (Heisenberg-
like) SG alloys, e.g., AgMn, CuMn, and AuFe, a SG phase
has been detected also in the presence of an external field
[2]. In the MF theory of vectorial SG this transition is
expected along the so-called Gabay-Toulouse line [3]. In
Ising-like materials, instead, like FexMn1�xTiO3, it is still
a matter of debate whether or not a SG phase occurs when
the system is embedded in a magnetic field [2,4].
Irreversible phenomena are, actually, detected in experi-
ments as the temperature is lowered: the separation of zero-
field cooled and field-cooled susceptibilities (or magne-
tizations) and the rapid increase of characteristic relaxation
times. In a zero field these are the signatures of a thermo-
dynamic transition, but in some recent ac measurements in
a magnetic field [4], their magnitude tends to depend
sensitively on frequency and they are interpreted as per-
taining to a glassy dynamic arrest, rather than to a true
thermodynamic transition. According to this, the SG fea-
tures measured in a field would be artifacts of being out of
equilibrium, similar to what happens in the structural glass
transition, in which the liquid glass former falls out of
equilibrium at low T when its structural relaxation time
becomes longer than the observation time and it vitrifies
into an amorphous solid.

The replica symmetry breaking theory, holding in the
MF regime for SG, predicts a thermodynamic transition in
magnetic field h at a finite temperature [5]. In this frame-
work, a transition line, called the de Almeida–Thouless
(dAT) [1] line, can be identified in the T-h plane between a
paramagnetic and a SG phase. At sufficiently low dimen-
sions (i.e., below the lower critical dimension, DL) the
transition disappears. The value of DL is not known, but
it is quite possible that in a fieldDL is higher than for h ¼ 0

(as it happens for a ferromagnet in a random field). There
are numerical evidences and analytic results [6] supporting
DL ¼ 2:5 at zero field. For h > 0, some arguments sug-
gested DL ¼ 6, but recently Temesvari [7] argued that the
dAT line can be continued below D ¼ 6. In the droplet
theory, instead, no transition is predicted to remain as soon
as an infinitesimal field is switched on, independently from
the value of D. A crossover length ‘dðh; TÞ is introduced
[8], beyond which the SG phase is destroyed by the field.
The predictions of the trivial-non-trivial scenario [9]
should be similar to those of the droplet model.
Extensive numerical works on the Edwards-Anderson
model in 4D and 3D yielded evidence both in favor of a
transition in field [10,11] and against it [12–14].
Unfortunately, finite size corrections are very strong in
the presence of an external field and it is hard to say
whether these simulations were really testing the thermo-
dynamic limit. To overcome this problem we use a recently
introduced SG model [15], which can be simulated very
efficiently, and a new data analysis, which should be less
sensitive to finite size effects (FSE). We report numerical
evidences for a phase transition in the presence of external
fields also in systems for which the MF approximation is
not correct.
The model.—We investigate a one dimensional chain of

L Ising spins (�i ¼ �1) whose Hamiltonian reads [15]

H ¼ �X
i<j

Jij�i�j �
X
i

hi�i: (1)

The quenched random couplings Jij are independent and

identically distributed random variables taking a nonzero
value with a probability decaying with the distance be-
tween spins �i and �j, rij � minðji� jj; L� ji� jjÞ, as

P ½Jij � 0� / r��
ij for rij � 1: (2)

Nonzero couplings take the value �1 with equal probabil-
ity. We use periodic boundary conditions and a z ¼ 6
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average coordination number [16]. The random field hi is
Gaussian distributed with zero average and standard de-
viation h [17]. We will denote the average over quenched
disorder (bonds and fields) by an overline. The universality
class depends on the value of �. For � > 1 it turns out to be
equal to the one of the fully connected version of the model
[18], where bonds are Gaussian distributed with zero mean
and a variance depending on the distance as �J2ij / r

��
ij . As

� varies, the model displays different behaviors [15]: for
� � �U � 4=3, the MF approximation is exact, while for
� > �U, it breaks down because of infrared divergences
(IRD). The value �U ¼ 4=3 corresponds to the upper
critical dimension (UCD) of short-range SG in the absence
of an external magnetic field (DU ¼ 6). At � > �L ¼ 2 no
finite temperature transition occurs, even for h ¼ 0 [19]. A
relationship between � and the dimensionD of short-range
models can be expressed as � ¼ 1þ 2=Dwhich is exact at
DU ¼ 6 (�U ¼ 4=3) and approximated as D<DU [20].
We note that in the ferromagnetic (ordered) Ising case on
the same kind of lattices, a simple theoretical argument
tells us that the value of �L is 2 for h ¼ 0 and 1.5 in a field.

Simulations details and data analysis.—We simulated

two replicas �ð1;2Þ
i using the parallel tempering algorithm

[21]. Field values are h ¼ 0, 0.1, 0.2, 0.3 for � ¼ 0, 1.2, 1.4
and h ¼ 0, 0.1, 0.15, 0.2 for � ¼ 1:5. We used sizes up to
L ¼ 214 spins for h ¼ 0 and up to L ¼ 212 for h > 0. The
number of samples is between 32 000 and 64 000 for all
sizes. Thermalization is guaranteed by the logarithmic
binning (in base 2) of data in MC steps until at least the
last two points coincide.

The presence of the SG long range order can be deduced
from the study of the four-point correlation function [22]

CðxÞ ¼ XL
i¼1

ðh�i�iþxi � h�iih�iþxiÞ2 (3)

and its Fourier transform ~CðkÞ. Indeed, both the SG sus-
ceptibility

�sg � ~Cð0Þ (4)

and the so-called second-moment correlation length [23]

� � 1

2 sinð�=LÞ
� ~Cð0Þ
~Cð2�=LÞ � 1

�
1=��1

(5)

diverge at the critical temperature in the thermodynamic
limit. For finite (but large enough) systems, the following
scaling laws hold in the MF regime (1<� � 4=3)

�sg

L1=3
¼ ~�½L1=3ðT�TcÞ�; �

L�=3
¼ ~�½L1=3ðT�TcÞ� (6)

with � ¼ 1=ð�� 1Þ, and in the IRD regime (� > 4=3)

�sg

L2�� ¼ ~�½L1=�ðT�TcÞ�; �

L
¼ ~�½L1=�ðT�TcÞ�: (7)

with 2� � ¼ �� 1 [18]. Unfortunately, finite size cor-
rections to the above scaling laws are known to be very
large, especially in the presence of an external field. It is
very important to understand these FSE and try to keep
them under control. In the main panel of Fig. 1 we plot

1= ~CðkÞ versus ½sinðk=2Þ=����1 for an interesting case
(IRD regime with field). For L ! 1 and T > Tc the propa-
gator on the lattice at small wave numbers should behave
like

~CðkÞ�1 ’ Aþ B½sinðk=2Þ���1; (8)

with �sg ¼ 1=A and � / ðB=AÞ1=ð��1Þ ¼ ðB�sgÞ1=ð��1Þ. In
other words, AðL ¼ 1; TÞ goes to zero at Tc, while BðL ¼
1; T ¼ TcÞ stays finite.
We observe in Fig. 1 that the largest FSE in ~CðkÞ are in

k ¼ 0, which are the data used for estimating �sg.

Moreover, FSE for k > 0 have an opposite sign with re-
spect to those in k ¼ 0 (cf. lower inset) and consequently

�, which is a function of ~Cð0Þ= ~Cð2�=LÞ, may be strongly
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FIG. 1 (color online). ~CðkÞ�1 vs
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sinðk=2Þ=�p

at � ¼ 1:5 (IRD
regime), h ¼ 0:1, T ¼ 2:1 and L ¼ 26; . . . ; 212. Inset: compari-
son between ~Cð0Þ�1 and its extrapolated valued A.
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affected. FSE are more evident in the large x tail of CðxÞ
and, thus, at small k in ~CðkÞ, while they decrease as k
increases. The large x part of CðxÞ strongly depends on the
average overlap order parameter hqi, which is known to
have strong sample-to-sample fluctuations in a field and
FSE due to negative overlaps which should disappear in the
thermodynamic limit.

With the aim of reducing FSE, we introduce a method

for estimating Tc using ~CðkÞ data with k > 0. We fit ~CðkÞ�1

by a quadratic function Aþ Byþ Cy2 with y ¼
½sinðk=2Þ=����1: the resulting fits have a �2=d:o:f: <
0:55 (comparable fit qualities have been found in the entire
analysis). As long as T > Tc, we expect limL!1AðL; TÞ ¼
��1
sg > 0: the inset in Fig. 1 shows the size dependence of
~Cð0Þ�1 and AðL; TÞ, with compatible L ! 1 limits.
In Fig. 2 we show the best fitting parameter AðL; TÞ for

� ¼ 1:5 and h ¼ 0:1. For each size we compute the tem-
perature TcðLÞ by solving the equation AðL; TcðLÞÞ ¼ 0 (in
this way only A > 0 data are used, which are the most
reliable). Finally, we estimate Tc ¼ limL!1TcðLÞ (inset of
Fig. 2) and obtain Tc ¼ 1:46ð3Þ. The TcðLÞ scaling in

L�1=� has an exponent �0:28, in good agreement with
1=� ¼ 0:25ð3Þ for the h ¼ 0 case [15]. On the same data
(� ¼ 1:5, h ¼ 0:1) the analysis of the crossing points of
�sg=L

2�� and �=L, cf. Eq. (7), is shown in Fig. 3 (right

panel), yielding no evidence for a phase transition, as in
Ref. [24]. A very natural explanation is the presence of
strong corrections to Eq. (7). The case � ¼ 1:4, h ¼ 0:1,
provides a still more useful comparison. Our method re-
turns a critical temperature Tc ¼ 1:67ð7Þ. Figure 3 shows
�sg=L

2�� and �=L vs T: crossings are present, but the

curves seem to merge for T & 1:5 and a precise determi-
nation of Tc is practically unfeasible. For � ¼ 1:2, h ¼
0:2, the estimate based on the scaling of �sg=L

1=3, Eq. (6),

yields Tc ¼ 1:67ð3Þ, while �=L�=3 curves do not show any
crossing for T > 1:2. Since the transition is MF-like in this

case, the behavior of � is clearly caused by large FSE.
Numerical estimates of Tc obtained with the two methods
are reported in Table I and look compatible. It is clear that
for large � our method works better. As � is decreased, this
new estimate becomes poorer, because the scaling expo-
nent �� 1 [cf. Eq. (8)] is too small to yield a robust
extrapolation of AðL; TÞ.
Discussion of experimental results.—A possible objec-

tion to the presence of the SG transition (supported by our
results) is that in experiments on Ising-like SG no dAT line
was detected. Here we consider, in particular, the most
recent experiments on Fe0:55Mn0:45TiO3 [4], where the ac
susceptibilities were accurately measured in the presence
of an external magnetic field. In order to relate external
fields in our model to those used in experiments we look at
how much the zero-field-cooled (ZFC) susceptibility at
Tcðh ¼ 0Þ, ��, decreases as h is increased. In Fig. 4 we
plot TcðhÞ=Tcð0Þ vs ��ðhÞ=��ð0Þ in our model for � ¼ 1:5.
In experiments on Fe0:55Mn0:45TiO3 [4] with fields of
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FIG. 3 (color online). Scaling functions vs T. Left panels: � ¼ 1:2, �sg=L
1=3 (top) and �=L5=3 (bottom) at h ¼ 0:2. Sizes are L ¼
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TABLE I. Estimates of Tc: column 4 from Eqs. (6) and (7) and
column 5 from the extrapolation of AðL; TÞ by Eq. (8).

� h Tc from �sg Tc from AðL; TÞ
1.2 0.0 2.24(1) 2.34(3)

1.2 0.1 2.02(2) 1.9(2)

MF 1.2 0.2 1.67(3) 1.4(2)

1.2 0.3 1.46(3) 1.5(4)

1.25 0.0 2.191(5) 2.23(2)

1.4 0.0 1.954(3) 1.970(2)

1.4 0.1 �1:5 1.67(7)

IRD 1.4 0.2 �1:1 1.2(2)

1.5 0.0 1.758(4) 1.770(5)

1.5 0.1 — 1.46(3)

1.5 0.15 — 1.20(7)

1.5 0.2 — 0.8(2)
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magnitude 100 Oe, 300 Oe, 1000 Oe and 3000 Oe one has,
respectively, ��ðhÞ=��ð0Þ ¼ 0:98, 0.94, 0.84, 0.75. These
ratios, cf. Fig. 4, suggest that a SG transition is unlikely to
be experimentally observed above h ¼ 1000 Oe.

Increasing �, and/or considering �Jij � 0, the critical

field decreases. The � ¼ 1:5 model considered above
is approximately equivalent to a short-range system in
D ¼ 4. Therefore, in order to detect, or rule out, a SG
phase inD ¼ 3, it becomes even more important to work at
small fields. The observation that the fields used in experi-
ments on Ising-like materials are maybe too large to see a
SG phase is in agreement with the results of Petit et al.,
who studied both Ising-like and Heisenberg-like SG
samples [2].

Conclusions.—By using a new method of data analysis,
we have been able to identify a dAT line in the diluted
power-law decaying interaction Ising SG chain at all val-
ues of the power analyzed, including values corresponding
to short-range SG models below the UCD. The behavior
below the dAT line may changewith the dimension. We are
presently studying this possibility.

These dAT lines were not found in the study of the fully
connected version performed in Ref. [25], nor in Ref. [24]
where a similar diluted model was simulated. There, Tc

was estimated by using the scaling properties of �=L. As
we have shown, this quantity suffers of strong FSE. We put
forward an alternative method to discriminate between a
pure paramagnetic phase at all temperatures and a finite
temperature SG transition. An advantage of this method is
that it mainly uses data at T > Tc.

For what concerns three dimensional real systems, we
hint that the magnitude of the external fields used in experi-
ments up to now might be too large to firmly rule out the
presence of a dAT transition line. We suggest a range of
fields (h < 1000 Oe) where the transition should take
place in Fe0:55Mn0:45TiO3 and we hope this may stimulate
further experimental investigations, as in , e.g., the very
recent study of Ref. [26].
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