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We investigate the quantum evolution of the excited electronic states combined with the classical

dynamics of the order parameter field in a spin-electron coupled system. It is found that the nanoscale

spatial structure of the spins evolves spontaneously accompanied by the localization of the electronic

wave functions, and the nonadiabatic quantum transitions through a resonant mutual precession analogous

to the electron spin resonance (ESR) process.
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The cross effect between electronic transport and exter-
nal field is fundamental to electronics, and is nothing more
than the control of the excitation and its relaxation dynam-
ics by the external field. In a bid for faster and higher
sensitive electronic devices beyond the conventional semi-
conductors which physics is well described by the single
carrier problem, the phase control of the strongly interact-
ing electron systems has attracted much attention. The
colossal magnetoresistance is an example of the control
of the spin, charge, and orbital ordering by external fields
[1], where the nanoscale structures play essential roles [2].
One of the most urgent and vital issues today is the real-
time dynamics of interacting electrons, a typical example
of which is the relaxation after the photoexcitations [3–7].
In the semiconductors, the relaxation dynamics of the
excited states is governed by the lattice degree of freedom,
i.e., the excited electrons show its relaxation via coupling
to the phonons. On the other hand, in the strongly interact-
ing electron systems, there exists another degree of free-
dom acting on the highly nontrivial relaxation dynamics,
that is, the spins. In more general cases, the dynamics of the
interacting electrons can be translated into the motion of
the noninteracting electrons in the background of the
fluctuating spin field [1]. Therefore, the relaxation dynam-
ics of the spin-electron coupled system is one of the most
fundamental issues in this research field.

In this Letter, we study the relaxation dynamics of the
excited states in the system, where the classical spins are
coupled to the conduction electrons. We find that the self-
organized space-time structure of the spins and electrons is
formed spontaneously through the quantum transition
analogous to the electron spin resonance (ESR) process
with the fluctuating spin field. In particular, in the mag-
netically ordered states, the coupled equations of motion
for the classical spins and quantum electrons can describe
the dynamics of the interacting electrons because the order
parameter behaves as a classical field [8]. This method
enables us to study the space-time structure of the quantum

dynamics, and also to obtain the intuitive physical picture
in larger-size or higher-dimensional systems for longer
time period. Therefore, the present work is complementary
to the previous ones for fully quantum systems [9–11]
where the system size or time period are limited.
We start with the Hamiltonian [12] on the square lattice,

Ĥ ¼ �t
X

hiji;s
cyiscjs þ H:c:� JH

X

iss0
cyiscis0 ~�ss0 � ~Si; (1)

where hiji denotes a nearest-neighbor pair, s and s0 are
indices for electron spin, respectively, and ~�ss0 is given by

Pauli matrices. The local spins, ~Si’s, are taken to be clas-
sical vectors with magnitude S. Other notations are stan-
dard. We consider the half-filled case.
Using finite size systems, we numerically investigate

the time evolution of the electronic states and local spins.
The equation of motion for the local spins is expressed

by the Landau-Lifschitz-Gilbert (LLG) equation,
_~Si ¼

�JHh ~�ii � ~Si � � ~Si � _~Si, where h ~�ii is the expectation
value of electron spin at site i, and the Gilbert damping
constant S� is introduced to include energy dissipation
processes for spins. When h ~�ii is fixed, the solution of
the LLG equation is given by �iðTÞ ¼
�½ðSJH=tÞjh ~�iij=ð1þ ðS�Þ2Þ�ðt=SÞT, and �iðTÞ ¼
2tan�1½tanð�i0=2Þ expðS��iÞ�, where (�i, �i) is the polar

and azimuthal angles of ~Si in the local-spin coordinate
where z axis is parallel to h ~�ii and initial value of �i is
zero, and T is time. The initial value of �i is written by �i0.
Evolution of the electronic state j�ðTÞi is given by

j�ðTÞi ¼ ÛðTÞj�ð0Þi, where ÛðTÞ is a unitary operator

for the time evolution. If f ~Sig are fixed, we have ÛðTÞ ¼
expð�iĤTÞ. We successively calculate the evolution of the
electronic state and the LLG equation for a small time
increment �T to investigate evolutions of the system in

total. The changes in f ~Sig and j�ðTÞi are reflected to the

calculation through Ĥ and fh ~�iig.

PRL 103, 266402 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

31 DECEMBER 2009

0031-9007=09=103(26)=266402(4) 266402-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.103.266402


The Hamiltonian (1) is expressed by a bilinear form of
fermion operators. In such a case, we restrict ourselves to
initial states which are given by single Slater determinant
states constructed by N products of single-particle states
�jð0Þ. Then, it is known that time-evolved states are given

by products of time-evolved single-particle states �jðTÞ
which remain within the single Slater determinant states
[13]. Note that�jðTÞ’s are different from the eigenstates of

the Hamiltonian (1) at each time T. This implies that our
formalism is in sharp contrast with an adiabatic approxi-
mation where states are determined by occupying energy
eigenstates at each time T.

Figure 1 shows the calculated result on the system of
size 8� 8 with the periodic boundary condition and a
parameter set, t ¼ 1, SJH ¼ 2, S� ¼ 1, S ¼ 1, �T ¼
0:008. The lower panel of Fig. 1(a) is the time (T) depen-
dence of the energy level structure. The Fermi level is
taken to be zero. At around T � 0, we clearly see the
energy gap 2SJH between upper and lower energy bands
in the lower panel of Fig. 1(a). We prepare the initial state
in the following way: The ground state of the model (1) at
half filling is the antiferromagnetic (AFM) insulating state
because of the perfect nesting condition in this system. In
order to mimic the thermal fluctuation, we introduce a
random tilting of each spin from the AFM configuration
up to 0.1 rad which corresponds to the state with an
excitation energy of �0:001t from the ground state. For
the initial state, we fill up the lower energy band, and then
transfer two electrons from the lowest eigenstates in the
lower energy band to the two highest levels in the upper
energy band. In the upper panel of Fig. 1(a), the number
of electron of the highest (lowest) energy states in the
upper energy band is shown by the broken (dotted) line,
and the solid line is the number of electron in the upper
energy band. Figures 1(b)–1(e) show the time dependence
of the configuration of the local spins, while Figs. 1(f)–1(i)
are the corresponding local energy density defined by

the expectation value of �ðt=2ÞP�;sðcyisc�s þ H:c:Þ �
JH

P
ss0c

y
iscis0 ~�ss0 � ~Si, where � runs over the nearest-

neighbor sites of i. In the Figs. 1(f)–1(i), the energy of
the ground state is taken to be zero.

We find several distinct time regions, stages (I)–(III):
Stage (I): Self-organization process.—Even if we start

with the almost perfect AFM spin configuration, the sys-
tem develops spontaneously the spatial inhomogeneity
with energy dissipation. At around T ¼ 20� 40, the elec-
trons at the highest two energy states start to spread into
lower energy states within the upper energy band [see the
broken line in the upper panel of Figs. 1(a), 1(b), and 1(f)].
As shown in Fig. 1(f), the excitation energy is already
localized well within the sample size. When we start
with the more disordered spin configuration corresponding
to the room temperature, the wave fuctions are localized as
in Fig. 1(f) from the beginning, and the successive relaxa-
tion is essentially the same. Up to T � 170, the deviation of
the spins are not so large moving around the original direc-

tion as shown by the snapshot in Fig. 1(c) at T ¼ 80. This
small amplitude spin fluctuation can induce the intraband
transitions of the excited electrons to lower and lower
energy state. The energy distribution shows the gentle
spatial dependence with the reduced average as shown in
Fig. 1(g) for T ¼ 80. This means that the electronic wave
functions are rather extended though slightly disturbed by
the small tilting of the spins.
Stage (II): Relaxation process with interband transi-

tion.—The inhomogeneity developed in the previous stage
brings about a remarkable localization behavior and de-
rives a dynamic relaxation process with the interband tran-
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FIG. 1 (color online). Time evolution of the double-exchange
model (see text). (a) The lower panel shows the time (T)
dependence of the energy level structure. In the upper panel,
the number of electrons in the upper energy band (solid line), in
the highest two energy states (broken line), and in the lowest
energy states of the upper energy band (dotted line) are shown.
Configuration of local spins at T ¼ 28, 80, 224, and 288 are
presented in (b), (c), (d), and (e), respectively. Dot indicates the
head of local spin. The local spins marked by ellipses in (d) and
(e) are strongly deviated from the ground state. Figures (f), (g),
(h) , and (i) show the distribution of excitation energy density
measured from the ground state at T ¼ 28, 80, 224, and 288,
respectively. A spline interpolation is used for the contour maps.
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sition. At around T � 220, the electronic and local-spin
structures show a dramatic change characterized by the
large-amplitude motion of a local spin marked by an ellipse
in Fig. 1(d). This motion starts at T � 200. At this time, the
excited electrons reach the lowest states in the upper en-
ergy band as shown by the dotted line in the upper panel of
Fig. 1(a), and find the localized place to relax furthermore.
That is, the localization of the electronic state together with
the large-amplitude local-spin motion with the polar angle
of the order of� occurs concomitantly. This corresponds to
a pair of the in-gap energy levels split off from the edge of
the upper and lower energy bands at around T ffi 200, as
seen in the lower panel of Fig. 1(a). When the separation of
in-gap energy levels is smallest, the number of electrons in
the upper energy band decreases rapidly [see the solid line
in Fig. 1(a)]. After that, the local spin recovers toward its
original direction, and the in-gap states merge again into
the upper and lower energy bands. As shown in Fig. 1(h)
for T ¼ 224, the excitation energy is concentrated around
this local spin, which in turn drives a motion of that
local spin. In the same way, the relaxation dynamics with
interband transition occurs again at T � 300, around an-
other site [see Figs. 1(a), 1(e), and 1(i)]. This transition
through the in-gap states reminds us of the Landau-Zener
mechanism. However, a more thorough study given below
reveals that it is a resonant transition and is completely
different from the Landau-Zener process.

Stage (III): Relaxation process to a metastable state.—
After T � 400, the active motion of the local spins is
finished and the alignment becomes nearly perfect AFM.
The excited electrons, however, remain more than �0:7 in
the upper energy band. This metastable state continues for
a long time within our simulation (at least up to T � 8000).

Now we consider the quantum dynamics in more depth.
As discussed below, there are two components of the local
spins, i.e., the rapid oscillation and the slow motion as

expressed by ~Si ¼ ~Sslowi þ ~S
rapid
i . Let us first consider the

rapid oscillation. Figure 2(a) shows the y component of the
local spin moving with a largest deviation from the AFM
ground state configuration through stage (I), and the inset is
the trajectory of the local spin on the Sx-Sy plane. As seen

in Fig. 2(a), the local spin shows an oscillation with a
period of Tp ffi 12, i.e., the frequency !ð¼ 2�=TpÞ ffi
0:5. We find that this frequency ! corresponds to the
difference of the energy between the highest ("1) and
second highest ("2) energy levels in the lower panel of

Fig. 1(a). The rapid oscillation ~Srapidi is driven by time
dependence of ~� in the LLG equation: when the wave
function has the form jc ðtÞi ¼ c1ðtÞj1i þ c2ðtÞj2i with
caðtÞ ¼ cað0Þe�i"at, h ~�iðtÞi has the component propor-

tional to c1ðtÞ�c2ðtÞh1j ~�ij2i / eið"1�"2Þt and its complex
conjugate. Putting this into the LLG equation, we obtain
~S
rapid
i ðtÞ / c1ðtÞ�c2ðtÞh1j ~�ij2i � ~Sslowi þ H:c: This interpre-

tation is consistent with the Fourier spectral weight [14] of
the spin motion in Fig. 2(e), where the peak is observed
around the frequency ! ffi 0:5, which corresponds to "1 �

"2 in stage (I). This rapid oscillation in turn induces the
transition between the state j1i and j2i, analogously to the
ESR where the oscillating transverse magnetic field indu-
ces the Rabi oscillation. Figure 2(b) is the time dependence
of the electron occupation number at the highest energy
states at stage (I), and it clearly shows this Rabi oscillation
with the frequency (�) determined by the oscillation am-

plitude (�Srapid) of ~S
rapid
i . From Fig. 2(a), we can read the

oscillation amplitude �Srapid ffi 0:3, so that the frequency
� is estimated to be JH�S

rapid ffi 0:6. Therefore, the occu-
pation number will show an oscillation with a period of
2�=ð2�Þ ffi 5:2. This oscillation is actually observed as
shown in Fig. 2(b). With the Gilbert damping, this oscil-
lation is the damped one and the occupation number of the
lower energy state increases.
With the time evolution at stage (I), the excited electrons

are distributed into lower energy levels, so that the spatial
inhomogeneity appears as observed in the spatial distribu-
tion of the local energy density. The inhomogeneity has
also been observed in the spatial distribution of the mag-
nitude of electron spins. Reflecting the inhomogeneity, the
magnitude of the rapid oscillation of the local spin depends
on the sites in real space strongly. When we look at the
local spins at other sites, this rapid oscillation is almost
missing and only the slow and small amplitude motion is
observed. This means that the site-selective lock-in of the
rapid oscillation of the spins occurs self-consistently with
the electronic levels before and after the transitions. This
self-organized space-time structure is the most basic
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FIG. 2. Relaxation driven by rapid oscillation. (a) The y com-
ponent of the local spin which shows the largest deviation from
the AFM ground state configuration in stage (I). The inset is the
trajectory of the local spin on the Sx-Sy plane. (b) The electron

occupation number at the highest energy states. (c) The same
with (a) but in stage (II). (d) The electron occupation number at
the lowest energy state (in-gap state) in the upper energy band.
(e) The Fourier spectral weight of (a). (f) The same with (e) but
T ¼ 132. (g) The Fourier spectral weight of (c). (h) The same
with (f) but T ¼ 600.
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mechanism of the quantum transitions in generic interact-
ing electron systems.

With further time evolution in stage (I), the energy
level structure becomes disordered reflecting the dis-
ordered spin configuration, and the spectral density
does not show characteristic frequency in this case [see
Fig. 2(f)] since it is given by many components corre-
sponding to various "n � "m.

Figure 2(c) shows the motion of the local spin marked by
an ellipse in Fig. 1(d) for stage (II). As seen in the inset of
Fig. 2(c), the local spin shows a rapid precession. Fig-
ure 2(d) shows the electron occupation number at the
lowest energy state (in-gap state) in the upper energy
band. In this case, however, the Rabi-oscillation behavior
has not been observed. This is because the excited elec-
trons in the states forming the bottom of the upper energy
band show a cascade relaxation process, and the several
frequencies are involved in those [see Fig. 2(g)]. It is seen,
in fact, that at the early period of stage (II), the excited
electrons occupy the lowest energy states of the upper
energy band, and from the those states an in-gap state ap-
pears (see Fig. 1). Corresponding to the differences be-
tween those energy levels, the spectral density in Fig. 2(g)
has the peak around ! ffi 1. In other words, the interband
transition occurs successively through those energy levels.
Therefore, the dynamics similar to the ESR process is also
essential for the interband transition in this stage (II). In
stage (III), there occurs no quantum transition any more

because h1j ~�ij2i � ~Sslowi ¼ ~0 for the AFM state.
The time scale for the slow motion of the local-spin

dynamics is determined by the driving force from the
excited electrons, and is estimated as 2�=fnex;iJHS�=½1þ
ðS�Þ2�g, where nex;i is the local density of the excited

electrons at site i. Roughly speaking, nex;i is estimated to

be 1=Neff where Neff is the spatial extent of the wave func-

tions of the excited states. Even when the wave function is
localized almost in a single site as shown in Fig. 1(h), nex;i
at that site is of the order of 0.2. Therefore, the time scale of
the local-spin dynamics is of the order of 4�=0:2 ffi 60
even for S� ¼ 1 in the unit of ðJHÞ�1.
We have examined the relaxation dynamics for a large

number of numerical conditions, i.e., the parameter sets,
the initial spin configurations, and the system sizes (up to
12� 12 system). Although the specific pattern depends on
the numerical conditions, the qualitative behavior of the
relaxation dynamics is essentially insensitive to them.
We have also studied the more realistic case of S� ¼

0:01 (Fig. 3). The mechanism of the relaxation dynamics
for S� ¼ 0:01 is essentially the same with the previous
case. For small S�, a large number of local spins show very
active dynamics. As a result, the relaxation process is
accelerated, and the 10 times difference in the slow time
scale appears although a hundred times difference in the
magnitude of S� is in this case (see Figs. 1 and 3).
In summary, we have studied the real-time relaxation

dynamics of the electron-spin coupled systems. The nano-
scale structure of quantum origin observed in our calcu-
lation is expected to be ubiquitous to relaxations in
interacting electronic systems.
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FIG. 3 (color online). Time evolution of the double-exchange
model. The parameter set, t ¼ 1, SJH ¼ 2, S� ¼ 0:01, S ¼ 1,
�T ¼ 0:008, is used. (a) The same with Fig. 1(a). (b) Structure
of local spins at T ¼ 2000. Distribution of energy density at
(d) T ¼ 2000, (e) T ¼ 2100, and (f) T ¼ 2200.
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