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It has been shown experimentally over nearly 80 years that surface fine roughness of circular pipes has a

crucial effect on the natural transition to turbulence. In this Letter, a theoretical explanation is suggested

for the roughness-induced instability. Once the nonlinear effect of roughness is introduced (through a pipe

with fine corrugation surface), the mean velocity profile becomes unstable to three-dimensional,

asymmetric, and helical traveling waves at moderate Reynolds numbers. The threshold of the aspect

ratio or shape factor of the roughness element required to cause instability scales as Re�2. Inspired by the

current model, a scaling form is proposed and the scaled friction factor measurements in rough pipes

collapse onto a universal curve.
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The laminar-turbulent transition in pipe flows has been
an open problem since the original experiments of
Reynolds [1]. Since the linear stability theory fails to
explain the instability, finite-amplitude disturbance must
play a key role for the onset of turbulence. The most natural
disturbance may be the wall roughness. Nikuradze’s ex-
perimental data [2] illustrate clearly that pipe roughness
has a dominant effect on the laminar-turbulence transition
and the turbulent states. A corrugated surface may be the
simplest model of a rough wall. Comparing with the ex-
tensive studies of corrugated channel flows [3–5], the
corresponding research on corrugated pipe flows is quite
rudimental [6,7]. The two-dimensional (no variation in the
azimuthal direction) instability in a corrugated circular
pipe was investigated recently [7], and the flow was found
to be unstable at moderate Reynolds numbers. It should be
noted that in all previous works, the axial characteristic
lengths of the wall variation are of the same order as the
pipe diameter, however, and much larger than the scale of a
typical roughness. Therefore, the characteristic difference
between the length scales of the roughness and of the pipe
has not been taken into account in theoretical studies until
now, and the problem: how small-scale wall variation
induces instability in pipe flows, is thus still open.

One mechanism, referred to as mean flow instability
hereafter, to sustain unstable disturbances in shear flows
is when the mean flow profile mildly deviates from the
stable basic flow profile, the flowmay become unstable [8].
It has been found that the Hagen-Poiseuille profile modi-
fied by a small axisymmetric and axially invariant distor-
tion was subjected to spatial instability, and the mode with
one azimuthal period was the most prone to destabilization
by an inviscid mechanism [9]. For parabolic profiles dis-
torted by axisymmetric and nonaxisymmetric azimuthally
periodic deviations, it was revealed that the corresponding
instabilities might induce two different paths to transition
[10]. Nevertheless, in previous studies of circular pipe
flows, the mean flow instability can lead to streamwise

vortices and streaktype structures, but those profile distor-
tions exist only when a prescribed volume force or pressure
deviation is applied in the axial direction [9]. It is shown in
this Letter how fine roughness affects the mean flow and
consequently triggers instability.
The rough pipe is simulated by a circular pipe with fine

surface corrugations and is described by cylindrical co-
ordinates x�, r�, and ��, respectively. Its corrugation am-
plitude and wavelength are both much smaller than the
average radius R0 (see Fig. 1). The Reynolds number is

defined as Re ¼ 2R0U0

� , and the flow rate Q ¼ �R2
0U0.

Using R0 as length scale and U0 as velocity scale, we
obtain the dimensionless governing equations for the ve-
locity field uðx; r; �; �Þwith components u, v,w in the x, r,
and � directions, respectively. The boundary conditions
are no-slip on the pipe wall where RðxÞ ¼ 1þ � sinðnxÞ
and boundedness at the center line. � is the relative rough-
ness. For fine roughness, the corrugation wavelength � ¼
2�
n�R0

¼ 2�
n � 1 is required. It is also assumed that � � � or

the shape factor S ¼ n� � 2�, so the flow is nearly par-
allel both in the center region and near the corrugated wall.
In order to study the mean flow stability, one needs to

solve the basic flow solutions Uðx; rÞ and Vðx; rÞ first. By
scaling, it is easy to check that the inertia terms in axial
momentum equation cannot be ignored when � is not much
larger than Re�. Hence, the Navier-Stokes equations for

εR0

0R

2 /n*π

FIG. 1 (color). Sketch of the setup. The pipe surface has fine
corrugations as R0½1þ � sinðn�x�Þ�, where � � 2�

n�Ro
� 1.
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the basic flow are simplified as
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with boundary conditions Uðx; RÞ ¼ Vðx; RÞ ¼ 0.
Since we are interested in the asymptotic behavior of

fine roughness (e.g., the corrugation wavelength � is third
or fourth order smaller than the pipe diameter), it becomes
a hard task to use numerical [7] or theoretical methods [3–
5] to obtain such basic flow solution. Instead, we use an
approximate solution of (1), which was solved with an
integral method for converging-diverging tube [11] and is
applicable for current model as � � �:
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V can be calculated easily based on the continuity equa-
tion. When the pipe wall is smooth, RðxÞ ¼ 1, the basic
flow solution (2) reduces to the classical Hagen-Poiseuille
flow solution. Since the corrugation wavelength � � 1,
the axial length scale of basic flow structure described by
(2) is much smaller than the average radius R0. The latter is
the scale of typical structures (e.g., waves and axial vor-
tices) observed in laminar-turbulent transitions. Therefore,
it is interesting to find how these small-scale structures

affect the mean flow field Û.
Mean Flows in practical circular pipes appear steady,

axisymmetric, and parallel at low Reynolds numbers, or

Û � ÛðrÞ, so the governing equations for mean flow are
reduced to
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@Û

@r

��������r¼0
¼0:

(3)

Obviously, @P̂
@x is independent of x and is a constant for

laminar smooth-pipe flows. In both the large-scale flow
(mean flow) and the small-scale flow near roughness ele-
ments, the pressure terms in (1) and (3) must remain to
balance the viscous terms and to maintain the flow rate.
Therefore, the pressure term is the bridge to connect differ-
ent axial-scale flows in a rough pipe. In this Letter, the
mean pressure gradient is estimated with the basic flow
solution by ignoring �2 and higher order terms without Re:
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where fðrÞ ¼ 8
225 r

2ð�40r4 þ 21r3 þ 60r2 � 45rþ 4Þ.
The constant C is chosen to guarantee a fixed flow rate,

and the averaged value is defined as �c ¼ 1
�

R
�
0 c dx. It is

noted that the basic flow solution is axially periodic with
wavelength �. Consequently, the mean flow solution is
solved from (3),

Û ¼ 2ð1� r2Þ �
�
Re

2
S

�
2
gðrÞ; (4)

where gðrÞ ¼ hð1Þð1� 2r2Þ þ hðrÞ þ 4ðr2 � 1Þ�R
1
0 hðrÞrdr and hðrÞ ¼ R

r
0
1
r

R
r
0 fðr1Þr1dr1dr. The first

term on the RHS of (4) is just the Hagen-Poiseuille flow
solution, and the second term embodies the nonlinear
effect of the pipe-wall corrugation. To our knowledge, it
is the first time to illustrate theoretically that how small-
scale wall variation or fine roughness affects the mean
velocity profile. It is also interesting to note that the
mean flow is not affected by the relative roughness but
by the Reynolds number and the shape factor S ¼ n�,
which divided by 2� is the ratio of the corrugation ampli-
tude to its wavelength.
The mean flow stability analysis was carried out based

on the mean flow solution (4). The form of rotating-
symmetric disturbance to be considered is

~u; ~v; ~w; ~p ¼ R½FðrÞ; iGðrÞ; HðrÞ; JðrÞ�eiðm�þ�x�!�Þ; (5)

where the integer m and � are wave numbers in the
azimuthal and the axial directions, and the imaginary part
of the complex frequency ! determines the stability of the
pipe flow to particular disturbance. The boundary condi-
tions differ for different azimuthal wave numbers [12]:

m¼0; Gð0Þ¼F0ð0Þ¼Gð1Þ¼Fð1Þ¼0;

m¼1; Gð0ÞþHð0Þ¼Fð0Þ¼H0ð0Þ¼Fð1Þ
¼Gð1Þ¼Hð1Þ¼0;

m�2; Fð0Þ¼Gð0Þ¼Hð0Þ¼H0ð0Þ¼Fð1Þ
¼Gð1Þ¼Hð1Þ¼0:

(6)

By substituting (6) into linearized Navier-Stokes equa-
tions, we obtain the governing equations of stability, which
are resolved by a fourth-order finite difference scheme at
uniformly distributed points in the r interval [0, 1]. A step
size of �r ¼ 1=200 was used and checked by recomputing
several points on the neutral curve with �r ¼ 1=300, and
the new values agreed with the old ones to better than 0.5%.
The solving method has been successfully used in previous
studies [13,14].
According to stability analysis, the mean flow becomes

unstable to a three-dimensional nonaxisymmetric travel-
ling wave mode (m ¼ 1) at moderate Reynolds numbers
when the fine roughness exists. It is shown in Figs. 2(a) and
2(b) that the critical Reynolds number decreases with the
increase of S. This is because larger shape factor S repre-
sents stronger nonparallel feature of the basic flow and
larger mean flow modulation, which makes the flow more
unstable. The mode with m ¼ 0 may be unstable, but its
critical Reynolds number is too high to be meaningful in
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understanding the transition of rough pipe flows. In addi-
tion, different Reynolds numbers and shape factors are
examined, and no unstable m ¼ 2 and 3 modes are found,
though the possibility of existence of unstablem � 2mode
is not excluded.

The mean velocity profiles at the critical states ofm ¼ 1
mode for S ¼ 0:006 and 0.008 are shown in Fig. 2(c).
Except for slight deviations from the parabolic profile,
there are no inflection points on these curves, so the
mean flow instability revealed in this Letter belongs to a
viscous mechanism. By using small impulsive jets and
push-pull disturbances from holes in pipe walls, it was
found experimentally [15] that the disturbance amplitude
threshold required to cause transition scaled as Re�1 ( jets)
and Re�1:3 or Re�1:5 (push-pull disturbance). Note that the
introduced jets and disturbances are local ones and are not
periodically distributed in the axial direction. According to
the present fine-roughness model, the threshold of shape
factor S ¼ n� scales as Re�2 as shown in Fig. 2(d), which
should be examined by future experiments.

The disturbing flow patterns for m ¼ 1 mode at critical
state (Re ¼ 2581 and � ¼ 0:254) as S ¼ 0:006 are shown
in Fig. 3. The main feature is a pair of regions with high or
low axial velocity and a pair of axial narrow vortices,
which are quite close to the wall. The amplitude of axial
velocity component is about 7 times larger than other
components, so there is strong longitudinal shear in the
disturbing flow field. Another feature is that the disturbing
velocity on the axis is not zero but a finite value with a
rotating direction.

For basic flows, it has been shown numerically [7] that
when the amplitude and wavelength of the roughness are
comparable (e.g., in Nikuradze’s setup), the flow through

the pipe is ‘‘isolated’’ from the wall roughness by the
surface of a streamtube, which deviates slightly and peri-
odically from a straight tube with radius R0. Since the
velocity on the streamtube is almost zero, as a first step,
it may be simulated qualitatively by current corrugated
pipe. In Nikuradze’s experiments, the roughness was simu-
lated by uniform-size sand grains (the same aspect ratio or
S), and the friction factor data almost collapse with each
other at the beginning of transition though the relative
roughness � ¼ R=R0(the ratio of grain size to pipe radius)
varies from 1=15 to 1=507. This experimental result agrees
qualitatively with present theoretical prediction: it is the
shape factor S, not the relative roughness �, that determines
the critical properties [e.g., the critical friction factor Cf as

shown in Fig. 4(a)]. The quantitative relation between the
critical Reynolds number and S still requires rigorous
experimental tests.
Inspired by the analysis of the corrugation model and

considering that S is almost a constant for sand grains, we
assume that CfRe� Re� for flows through sand coated

pipes at low Reynolds numbers. In addition, since sand
grains have one single length scale �, we assume that
CfRe� Re	�
 at high Reynolds numbers. Naturally, we

propose an empirical scaling form for the friction factor in
Nikuradze’s experiments,

CfRe ¼ GðRe� þ CsRe
	�
 Þ; (7)

where �, 	, and 
 are constants to be determined. Cs is
determined to guarantee that all curves for different �meet
roughly at the same point shown by the arrow in Fig. 4(a).
Note that no such a point exists in Moody’s chart because
commercial pipes were used in those experiments, where
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FIG. 2. Neutral curves (a), (b) and the mean velocity profiles at
corresponding critical states (c) form ¼ 1mode. The solid, thick
dashed, and dotted lines are results for S ¼ 0:008, 0.006, and 0,
respectively. (d) Critical shape factor S required to cause insta-
bility as a function of Reynolds number.

FIG. 3 (color). The disturbing flow fields of critical states at
S ¼ 0:006. The frames (a), (b) are separated with 4x ¼ �

2� , and

the color contours indicate the values of disturbing axial velocity
~u, which is about 7 times larger than other components. The
isosurfaces of ~u and axial vorticity are shown in (c) and (d),
respectively.
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the roughness shape, unlike sand grains, varied with loca-
tions and pipe materials. Therefore, Cs reflects the shape
character of roughness element and is referred as shape
coefficient hereafter. In turbulence regime, it is easy to
apply the method proposed by Goldenfeld [16] to find
that the Blasius Law yields � ¼ 3=4 and the Strickler
Law yields 
=	 ¼ 1=3. In order to test the scaling form
(7), 	 ¼ 2 is used and correspondingly Cs ¼ 3� 10�5 is
determined. As shown in Fig. 4(b), all Nikuradze’s data at
different relative roughness � collapse onto one single
curve.

Friction factor Cf in rough pipes, as a mean property of

turbulent flows, has been investigated with phenomeno-
logical theory of Kolmogórov [17] and empirical scaling
laws [16]. Based on the analogy between turbulence and
critical phenomenon, the latter showed that Nikuradze’s
data in turbulence regimes collapsed roughly on one curve
when properly scaled. Different from these previous at-
tempts of scaling, the curve shown in Fig. 4(b) not only
includes the data between the Blasius and Strickler re-

gimes, but also includes the measurements in laminar
and transitional regions. Although (7) is an empirical
form, the data collapse suggests that a thorough under-
standing of the roughness-induced transition of pipe flows
must include not only the relative roughness but also the
shape configuration (e.g., Cs) of the fine-roughness ele-
ment, whose effect has not been reported before. It is also
shown that the data collapse is not rigorous in some re-
gimes, reflecting uncertainties in the data and the possibil-
ity that Cs may be not a constant but a weak function of
some fundamental parameters.
In conclusion, different from previous studies, this

Letter constitutes the first bridge for pipe flow between
the modulated velocity profile required by mean flow in-
stability and its physical origin, which is the fine roughness
in the present model. Since the current universal curve
shown in Fig. 4(b) includes the whole range of Reynolds
number, (7) is likely to be the simplest universal scaling
form in the sense of being dependent of Reynolds number
and the nature of the roughness of the pipe.
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number. The red and blue lines satisfy CfRe ¼ 64þ 32

1575 Re
2S2
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for m ¼ 1 mode. (b) Friction factor in experiments as reported
by Nikuradze [2], scaled according to the text.
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