PRL 103, 262301 (2009)

PHYSICAL REVIEW LETTERS

week ending
31 DECEMBER 2009

Third Moments of Conserved Charges as Probes of QCD Phase Structure

Masayuki Asakawa,'* Shinji Ejiri,>" and Masakiyo Kitazawa'"*

"Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
*Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA
(Received 14 April 2009; published 28 December 2009)

The third moments of conserved charges, the baryon and electric charge numbers, and energy, as well as
their mixed moments, carry more information on the state around the QCD phase boundary than
previously proposed fluctuation observables and higher order moments. In particular, their signs give
plenty of information on the location of the state created in relativistic heavy ion collisions in the
temperature and baryon chemical potential plane. We demonstrate this with an effective model.
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Quantum chromodynamics (QCD) is believed to have a
rich phase structure in the temperature (7)) and baryon
chemical potential (ug) plane. Lattice QCD calculations
indicate that the chiral and deconfinement phase transitions
are a smooth crossover on the temperature axis [1], while
various models predict that the phase transition becomes of
first order at high density [2]. The existence of the QCD
critical point is thus expected. To map these components of
the phase diagram on the 7-upg plane is one of the most
challenging and stimulating subjects which may be
achieved by relativistic heavy ion collisions [3].

Various observables have been proposed for this purpose
[4-7]. Most scenarios suggested so far are concerned
with fluctuations, such as those of conserved charges,
momentum distributions, slope parameters, and so forth.
For example, fluctuations of conserved charges behave
differently between the hadronic and quark-gluon plasma
phases, and may be used as an indicator of the realization
of the phase transition [4,5]. The singularity at the critical
point, at which the transition is of second order, may also
cause enhancements of fluctuations if fireballs created by
heavy ion collisions pass near the critical point during the
time evolution [6,7]. Because of finite size effects and
critical slowing down, however, such singularities are
blurred and its experimental confirmation may not be
possible [8,9]. In fact, so far no clear evidence for the
critical point has been detected in event-by-event analyses
[3]. Approaches to use higher order moments for this
purpose have been also suggested recently [10] and experi-
mental attempts to measure those higher order moments
were reported, for example, in Ref. [11]. Almost all pre-
vious studies, however, focus on the absolute value, espe-
cially the enhancement, of each observable around the
phase boundary.

In the present Letter, we propose to employ signs of third
moments of conserved charges around the averages, which
we call, for simplicity, the third moments in the following,
to infer the states created by heavy ion collisions. In
particular, we consider third moments of conserved quan-
tities, the net baryon and electric charge numbers, and the
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where N_. with ¢ = B, Q represent the net baryon and
electric charge numbers in a subvolume V, respectively,
E denotes the total energy in V, SN. = N, — (N,), and
8E = E — (E). We also make use of the mixed moments
defined as follows:
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To understand the behaviors of these moments around
the QCD phase boundary, we first notice that the moments
Egs. (1) and (2) are related to derivatives of the thermody-
namic potential per unit volume, w, up to third order with
respect to the corresponding chemical potentials and 7.
The simplest example is m;(BBB), which is given by

ms(ccE) =
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where the baryon number susceptibility, yg, is defined as
%w  ((6Ng)?)
Xp= =75 = “)
ouy VT

The baryon number susceptibility yp diverges at the criti-
cal point and has a peak structure around there [6,12,13].
Since m3;(BBB) is given by the up derivative of yp as in
Eq. (3), the existence of the peak in )} means that
ms(BBB) changes its sign there. Although the precise
size and shape of the critical region are not known, various
models predict that the peak structure of yg well survives
far along the crossover line [2,12,14] (see, Fig. 1 as a
demonstration of this feature in a simple effective model;
the details will be explained later). This means that the near
(hadron) and far (quark-gluon) sides of the QCD phase
boundary can be distinguished by the sign of m;(BBB)
over a rather wide range around the critical point. It is this
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FIG. 1 (color online). 7 and wp dependence of the baryon
number susceptibility yp multiplied by 7' in the Nambu—Jona-
Lasinio model. The bold line on the bottom surface shows the
first order phase transition line and the point at the end is the
critical point.

feature that third moments carries more information than
fluctuations (second moments); fluctuations are, by defini-
tion, positive definite and cannot differentiate the near side
from the far side as decisively as the third moments. We
note that odd power moments around the averages in
general do not vanish except the first order one. As we
shall see later, all third moments presented in Egs. (1) and
(2) can be expressed in terms of derivatives of correspond-
ing susceptibilities which diverge at the QCD critical point,
and hence change their signs there.

The third moments can be measured in heavy ion colli-
sions by the event-by-event analysis similarly to fluctu-
ations, provided that N, and/or E in a given rapidity range,
Ay, in fireballs created by collisions is determined in
each event. The measurement of Ny is difficult because
of the difficulty in identifying neutrons. On the other hand,
Nq and E can be measured with the existing experimen-
tal techniques. Four out of the seven third moments in
Egs. (1) and (2) composed of Ny and E thus can be
determined experimentally.

All quantities we are considering here, Ngo and E, are
conserved charges and the variation of their local densities
requires diffusion. In Ref. [4], it was shown that the effect
of diffusion is small enough for the fluctuations of the
baryon and electric charges if the rapidity range is taken
to be Ay = 1 [15]. In the estimate, the one dimensional
Bjorken expansion and straight particle trajectories were
assumed. If the contraction of hadron phase due to the
transverse expansion and the short mean free paths are
taken into account, the above estimate will be more re-
laxed. This conclusion is not altered even if we take the
effects of global charge conservation and resonance decays
into account [4,5,16]. On the other hand, the experimen-
tally measured charge fluctuations at RHIC [3] are close to

those in the hadron phase than the free quark-gluon one.
We, however, remark that the values of charge fluctuations
in the quark-gluon phase can be similar to that in the
hadron phase if the quark and gluons are strongly coupled
[17]. The experimental results therefore do not necessarily
contradict a realization of the quark-gluon phase.

Once the negativeness of third moments is established
experimentally, it is direct evidence of two facts: (1) the
existence of a peak structure of corresponding susceptibil-
ity in the phase diagram of QCD, and (2) the realization of
hot matter beyond the peak, i.e., the quark-gluon plasma, in
heavy ion collisions. We emphasize that this statement
using the signs of third moments does not depend on any
specific models. The experimental measurements of signs
of moments also have an advantage compared to their
absolute values: it is usually essential to normalize experi-
mentally obtained values by extensive observables, such as
the total charged particle number N, in order to compare
the experimental results with theoretical predictions [4,5].
In the measurement of signs, however, normalization is not
necessary. In the measurement of absolute values, one has
to be aware of the effect of global charge conservation
when Ay is large [16]. It is, however, expected that the
effect does not change the signs of the third moments. It is
these features that our proposal is less subject to experi-
mental and theoretical ambiguities and more robust than
previously proposed ones.

Let us now consider the behavior of third moments other
than m;(BBB) around the critical point. First, the third
moment of the net electric charge m;(QQQ) is calculated
to be

B P w

3

g
_1 83w_3 P w _3 P w _163w
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(5)

where uq represents the chemical potential associated
with Nq, ie., 9/duq = (2/3)d/0m, —(1/3)d/dpy =
(0/0up + d/dup)/2, and the isospin chemical potential
is defined as u; = (u, — pq)/2 with u,, being the
chemical potentials of the up and down quarks, respec-
tively. In relativistic heavy ion collisions, the effect of
isospin symmetry breaking is small. Assuming the isospin
symmetry, the second and last terms in the most right-hand
side of Eq. (5) vanish, and one obtains

1
m3(QQQ) =

m3(QQQ) =

d
8 9uup (xs +3x1), (6)
with the isospin susceptibility y; = —d%w/duf. Under the
isospin symmetry, y; does not diverge at the critical point
because the critical fluctuation does not couple to the
isospin density [7]. The critical behavior of the term in
the parenthesis in Eq. (6) in the vicinity of the critical point
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is thus solely governed by yg. Since m3(QQQ) is a up
derivative of this term, a similar behavior as m;(BBB) is
expected.

Next, it can be shown that mixed moments including a
single E are concisely given by

1 a(Tx.)

Toar |y ™

a

ms(ccE) =

with ¢ = B, Q, where xo = —0*w/dug = (xg + x1)/4
is the electric charge susceptibility. The T derivative in
Eq. (7) is taken along the radial direction from the ori-
gin with fixed g = ug/T, ie., 9/3T|, =9/dT|,, +
(ug/T)d/0ugly. Since Ty, diverges at the critical point,
Eq. (7) again leads to a similar behavior of m;(ccE) as the
above-mentioned moments.

To argue the behaviors of remaining third moments
including two or three E’s, it is convenient to first define
Cp = —T(0*w/dT?), = ((SE)*)/VT?. The third mo-
ments are then given by

1 a(TPCy)
m3(EEE) = ™ |, 3
iy (BEE) = 2my(QEE) = + /<4 ©)

T dpg

Since C, is the second derivative of @ along the radial
direction, it diverges at the critical point which belongs to
the same universality class as that of the 3D Ising model.
Therefore, m3(EEE), m3;(BEE), and m3(QEE), all change
their signs at the critical point.

While the above arguments, based on the divergence of
second derivative of w, guarantee the appearance of the
region with negative third moments in the vicinity of the
critical point, they do not tell us anything about the size of
these regions in the 7-up plane. In fact, all third moments
considered here become positive at sufficiently high 7 and
mp > 0 where the system approaches a free quark and
gluon system. The regions are thus limited more or less
near the critical point.

The information about the behavior of the third mo-
ments at small ug can be extracted from the numerical
results in lattice QCD. For example, with the Taylor ex-
pansion method, the thermodynamic potential is calculated
to be w = —cr(Tud — cs(TNpl — co(T)ul — -+, and
one can read off the behavior of m;(BBB) at small ug
as m3(BBB) = 24[c4(T)ug + Scs(T)uiy + -+ -]. Lattice
simulations indicate that c4(7) is positive definite, while
c6(T) becomes negative in the high temperature phase [18].
From this result, one sees that m3;(BBB) is positive for
small ug, while the negative c¢(T) suggests that the sign of
m;(BBB) eventually changes at sufficiently large wg.
Other moments for small ug can also be evaluated in the
Taylor expansion method by expanding o with respect to T
and w. If the contour lines of vanishing third moments are

close enough to the 7 axis, the lattice simulations may be
able to determine these lines. Since the region with a
negative third moment should depend on the channel,
combined information of signs of different third moments,
and the comparison of the third moments obtained by
experiments and lattice simulations, will provide a deep
understanding about the state of the system in the early
stage of relativistic heavy ion collisions and the QCD
phase diagram.

The range of up/T where lattice simulations are suc-
cessfully applied, however, is limited to small wg/T with
the present algorithms. In particular, thermodynamics
around the critical point cannot be analyzed with the
Taylor expansion method. In order to evaluate the qualita-
tive behavior of the third moments in such a region, one has
to resort to effective models of QCD. To make such an
estimate, here we employ the two-flavor Nambu-Jona-
Lasinio model [19,20] with the standard interaction L;,, =
G{()* + (YiysT; )}, where ¢ denotes the quark
field. For the model parameters, we take the values deter-
mined in Ref. [19]; G = 5.5 GeV 2, the current quark
mass m = 5.5 MeV, and the three-momentum cutoff A =
631 MeV. For the isospin symmetric matter, this model
gives a first order phase transition at large wg, as shown on
the bottom surface of Fig. 1 by the bold line. The critical
point is at (7, ug) = (48, 980) MeV.

In Fig. 1, we also show the T and uy dependence of T yg
calculated in the mean-field approximation. One observes
that yp diverges at the critical point, and the peak structure
well survives along the crossover line up to higher tem-
peratures [12]. The region where each moment becomes
negative in the T- up plane is shown in Fig. 2. One sees that
all the moments become negative on the far side of the
critical point as it should be, whereas the extent of the
region depends on the channel. The figure shows that areas
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FIG. 2 (color online). Regions where third moments take
negative values in the 7-up plane. The regions are inside the
boundaries given by the lines.
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with m;(BBB) <0 and m;(BBE) <0 extend to much
lower wp and much higher T than the critical point. This
suggests that even if the critical point is located at high up,
the negative third moments can be observed by heavy ion
collision experiments. The figure also shows that the areas
have considerable thicknesses along the radial direction.
Since the system stays near the phase transition line con-
siderably long regardless of the order of the phase transi-
tion, first order or crossover, once the state on the far side is
created, negative third moments are very likely to be
formed and observed. The wide regions of negative mo-
ments also indicate that they are hardly affected by critical
slowing down and finite volume effects during the dynami-
cal evolution of fireballs.

Figure 2 also shows that areas with negative m;(EEE),
m3(QEE), and m3;(BEE) are much larger than those of the
other moments in the 7-up plane; although not shown in
the figure, these areas extend even to the 7 axis. The
behaviors of m3;(EEE) and ms;(cEE) near the T axis can
be checked directly by the lattice simulations. If the range
of T satisfying m;(EEE) < 0 is sufficiently wide at ug =
0, it is possible that the negative third moments are mea-
sured even at the RHIC and LHC energies. Whether the
negative moments survive or not in this case depends on
the diffusion time of the energy density, in other words the
heat conductivity. One can thus use the signs of m;(EEE)
and m;(cEE) to estimate the diffusion time of the charges
and energy. The third moments m;(QQQ) and m;(QQE),
on the other hand, become negative only in small regions
near the critical point. These behaviors come from the
large contribution of y; in Eq. (6).

It should be, however, remembered that the results in
Figs. 1 and 2, are obtained in an effective model. In
particular, the model employed here gives the critical point
atrelatively low T and high ug [2]. If the critical point is at
much lower ug, the areas with negative moments in Fig. 2
should also move toward lower ug and higher 7.

In this Letter, we have pointed out that the third mo-
ments of conserved charges, the net baryon and electric
charge numbers and the energy, carry more information on
the state around the QCD phase boundary than usual
fluctuation observables. They change signs at the phase
boundary corresponding to the existence of the peaks of
susceptibilities. If the negative third moments grow at early
stage of the time evolution of fireball created in the colli-
sions and if the diffusion of charges is slow enough, then
the negative third moments will be measured experimen-
tally through event-by-event analyses. Once such signals
are measured, they serve as direct evidence that the peak
structure of corresponding susceptibility exists in the phase
diagram of QCD, and that the matter on the far side of the
phase transition, i.e., the quark-gluon plasma, is created.

The combination of the third moments of different chan-
nels, and their comparison with the numerical results in
lattice QCD, will bring various information on the phase
structure and initial states created in heavy ion collisions at
different energies.
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