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Using a new quark-field construction algorithm and a large variational basis of operators, we extract a

highly excited isovector meson spectrum on dynamical anisotropic lattices. We show how carefully

constructed operators can be used to reliably identify the continuum spin of extracted states, overcoming

the reduced cubic symmetry of the lattice. Using this method we extract, with confidence, excited states,

states with exotic quantum numbers (0þ�, 1�þ, and 2þ�), and states of high spin, including, for the first

time in lattice QCD, spin-four states.
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Introduction.—The spectroscopy of excited meson states
is enjoying a renaissance through the observations of mul-
tiple new states in the charmonium sector. This will con-
tinue through the forthcoming experimental efforts at
GlueX, BES III, and PANDA that will probe the spectros-
copy of mesons in both the light and charm sectors. New
states demand explanation within QCD and may offer
insight into the appropriate degrees-of-freedom of low
energy QCD. A particular example is mesons of exotic
JPC, those states whose quantum numbers cannot be con-
structed from a quark-antiquark bound state, and whose
existence may signal the influence of explicit gluonic
degrees of freedom.

Lattice QCD provides an ab initio method for the deter-
mination of the hadron spectrum. This approach to spec-
troscopy necessitates methods for measuring the two-point
correlation functions of field operators with the selected
quantum numbers under investigation. However, it has
proven difficult to extract precise information from lattice
QCD about excited states, states of high spin, and states
with exotic JPC. In this letter we will present results using a
large basis of composite QCD operators and a variational
analysis method which show that such extractions are now
possible.

Access to states of spin-two or higher requires operators
with spatially separated quark fields. To facilitate this kind
of construction, a new quark-field construction algorithm,
called ‘‘distillation’’, was developed [1] recently which
enables efficient calculations of a broad range of hadron
correlation functions, including those with spatially sepa-
rated quark fields.

In Euclidean space, excited-state contributions to corre-
lation functions decay faster than the ground-state and at
large times are swamped by the larger signals of lower
states. In improving our ability to extract excited states,
better temporal resolution of correlation functions proves

extremely helpful. An anisotropic lattice, where the tem-
poral direction is discretized with a finer grid spacing than
its spatial counterparts, is one means to provide this reso-
lution while avoiding the increase in computational cost
that would come from reducing the spacing in all direc-
tions. To this end, a large-scale program has been initiated
to generate dynamical anisotropic gauge fields with two
light clover quarks and one strange quark [2,3].
In this work, these anisotropic lattices are combined

with the distillation technique for the construction of
quark-antiquark operators with multiple derivative inser-
tions. Only the connectedWick contractions are computed,
giving access to isovector quantum numbers. For this first
investigation, the three-flavor degenerate-quark-mass data
set is used (m�¼mK¼m��700MeV), with lattice spac-

ings as � 0:12 fm, a�1
t � 5:6 GeV and a spatial lattice

extent of�2 fm. We will argue later that using a relatively
large quark mass in this first study reduces complications
due to mesons being able to decay into multimeson states.
Spin on a cubic lattice.—Lattice QCD computations

consider the theory discretized on a four-dimensional
Euclidean hypercubic grid. The reduced three-dimensional
rotational symmetry with respect to the continuum intro-
duces complications when one wishes to study particles of
a particular spin, since spin no longer identifies irreducible

TABLE I. Continuum spins subduced into lattice irreps
�ðdimÞ.
J Irreps

0 A1ð1Þ
1 T1ð3Þ
2 T2ð3Þ � Eð2Þ
3 T1ð3Þ � T2ð3Þ � A2ð1Þ
4 A1ð1Þ � T1ð3Þ � T2ð3Þ � Eð2Þ
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representations of the cubic symmetry group [4]. There are
five single-cover lattice irreps for each parity and charge-
conjugation: A1, T1, T2, E, A2. The distribution of the
various M components of a spin-J meson into the lattice
irreps is known as subduction, the result of which is dis-
played in Table I. In the continuum limit, the full rotational
symmetry is restored and the components subduced into
different irreps will be degenerate, whereas at finite lattice
spacing they will be split by an amount scaling with at least
one power of the lattice spacing, as.

This suggests a simple method to assign continuum
spins by attempting to identify degeneracies across lattice
irreps compatible with the subduction patterns in Table I.
Unfortunately the empirical meson spectrum shows a num-
ber of approximate degeneracies that may be confused
with those originating through discretisation. As an ex-
ample consider the �c0;1;2 states in charmonium, split

only by a small spin-orbit force. These states would appear
in a lattice computation as a single state in each of Aþþ

1 ,

Tþþ
1 , Tþþ

2 and Eþþ and could easily be mistaken with a

single J ¼ 4 state split by discretisation effects. In the high
lying part of the calculated spectrum, shown in Figs. 1 and
2, we observe considerable degeneracy that renders spin-
identification by this method virtually impossible. In this
letter we consider using the additional information em-
bedded in the overlaps of states onto carefully constructed
operators at zero momentum.

Meson operators.—By using a circular basis for both
spatial derivatives and the three-vector-like gamma matri-

ces (�i), we can utilize the SO(3) Clebsch-Gordan coef-
ficients to construct continuum operators of definite spin.
For example, with one derivative and a vector gamma
matrix we can construct operators of overall spin J ¼ 0,
1, 2:

ð��D½1�
JD¼1ÞJ;M � h1; m1; 1; m2jJ;Mi ~�c�m1

D
$

m2
~c ;

where repeated m indices are summed. In the distillation

framework, the fermion fields, ~c are smeared using a low-
rank filtering operator.
In the case of two derivatives we couple into a definite

spin before coupling to the gamma matrix:

ð��D½2�
JD
ÞJ;M � h1; m3; JD;mDjJ;Mi

� h1; m1; 1; m2jJD;mDi
� ~�c�m3

D
$

m1
D
$

m2
~c :

For three derivatives combining the outermost derivatives
together first ensures definite charge conjugation:

ð��D½3�
J13;JD

ÞJ;M � h1; m4; JD;mDjJ;Mi
� h1; m2; J13; m13jJD;mDi
� h1; m1; 1; m3jJ13; m13i
� ~�c�m4

D
$

m1
D
$

m2
D
$

m3
~c :

This scheme can be extended to any desired number of
covariant derivatives, which in practical computations are
replaced by gauge-covariant finite differences. The gauge
links appearing in these differences are stout-smeared to
reduce UV fluctuations. To be of any real use in lattice
calculations these operators of definite continuum spin, J,
must be subduced into the irreducible representations of
the cubic lattice rotation group (� ¼ fA1; T1; T2; E; A2g).
Noting that each class of operator is closed under rotations,
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FIG. 1 (color online). Extracted spectrum of states in the
PC ¼ þ� , þþ channels displayed by lattice irrep. The num-
ber of operators in each irrep is given below the irrep label. All
masses scaled by the � baryon mass as extracted on this lattice
[3]. Boxes represent the extracted mass and one sigma statistical
uncertainties. Color coding indicates continuum spin identifica-
tion. Orange boxes have well-determined masses but undeter-
mined spin. Grey boxes have masses that are not well determined
by the variational fitting method. States with exotic quantum
numbers 0þ� and 2þ� are highlighted.

0.6

0.8

1.0

1.2

1.4

1.6

(12) (18) (18) (14) (4) (6) (26) (18) (12) (6)

FIG. 2 (color online). As previous but for PC ¼ �þ , �� .
The lowest lying exotic 1�þ is highlighted.
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the subductions can be performed using known linear
combinations of the M components for each J:

O ½J�
�;� � ð��D½nD�

... ÞJ�;� ¼ X

M

SJ;M
�;�ð��D½nD�

... ÞJ;M

� X

M

SJ;M�;�O
J;M; (1)

where � is the ‘‘row’’ of the irrep. Note that, althoughO½J�
�;�

can have an overlap with all spins contained within �, it
still carries the memory of the J from which it was sub-
duced, a feature we exploit below.

Spectral analysis.—For each lattice irrep �PC the full
matrix of correlators CijðtÞ was computed with equivalent

rows (�) averaged over. The dimension of the matrix is
therefore equal to the number of operators constructed in
that irrep.

The correlation matrix can be described by a spectral

decomposition CijðtÞ ¼ P
n

Zn�
i Zn

j

2mn
e�mnt (we only consider

zero momentum), where Zn
i ¼ h0jOijni encodes the over-

lap of state n onto operator Oi. An optimal method (in the
variational sense [5,6]) to extract mass and Z information
from the matrix of correlators is by solution of a general-
ized eigenvalue problem, CijðtÞvn

j ¼ �nðt; t0ÞCijðt0Þvn
j ,

where the eigenvectors vn are related to the Z by Zn
j ¼

ffiffiffiffiffiffiffiffiffi
2mn

p
emnt0=2vn�

i Cijðt0Þ. Our implementation of this ap-

proach is described in [7].
The extracted spectrum across lattice irreps, including

all operators with up to three derivatives, is shown in
Figs. 1 and 2. We give the number of operators in each
irrep and the color coding indicates continuum spin assign-
ment suggested by a method we now describe.

Our particular choice of operator construction offers us a
method to identify the continuum spin of a state. We take
advantage of the fact that, at the lattice spacing we work,
we expect lattice operators acting on extended objects such
as mesons to behave in a manner reasonably close to the
full rotational symmetry. In the continuum our operators

are of definite spin such that h0jOJ;MjJ0;M0i ¼
Z½J��J;J0�M;M0 and so h0jO½J�

�;�jJ0;Mi ¼ SJ;M
�;�Z

½J��J;J0 . Z
½J�

is a single number of dynamical origin describing the
overlap of the state of spin J onto the operator used. We
form a correlator in a given irrep � and average over
equivalent rows, �,

1

dimð�Þ
X

�

C½��
�� � 1

dimð�Þ
X

�

h0jO½J�
�;�O

½J�y
�;� j0i:

Inserting a complete set of meson states between the
operators and using the fact that the subduction coefficients

form an orthonormal matrix,
P

MS
J;M
�;�S

J;M�
�0;�0 ¼ ��;�0��;�0 ,

we obtain terms proportional to Z½J��Z½J�; these terms do
not depend upon which � we have subduced into. Hence,
for example, a J ¼ 3 meson created by a [J ¼ 3] operator
will have the same Z value in each of the A2, T1, T2 irreps.
Since this derivation uses smoothed, semiclassical fields it

is valid in the continuum limit and at finite lattice spacing
we expect there to be small deviations from equality due to
discretization effects.
We take advantage of these properties to identify the

spin of the extracted states in the following way. Firstly, we
consider the relative magnitudes of the extracted Z values
for various states. Figure 3 shows that for the J�� mesons,
each state has large overlap only onto operators of a single
spin. The second stage of the identification requires us to
match states in different irreps and compare their Z values
with common operators subduced across irreps. As shown
in Fig. 4, these values agree well. Any small discrepancy
could be attributed to two causes: discretization errors
from the use of simple central-difference operators to
represent derivatives or the effect of renormalization.
These operators act on smoothed gluonic and quark fields
and this eliminates fluctuations at the cutoff scale so the
latter effects will most likely be very small.
Using this method we have extracted a large number of

states with all possible PC combinations and confidently
identified the spin of these states; the spectrum is shown in
Figs. 1 and 2. As well as extracting many excited states, we
have for the first time identified states with spin four: 4þþ,
4�þ, and 4��. We have extracted states with exotic quan-
tum numbers (0þ�, 1�þ and 2þ�) and these are high-
lighted in the figures. The presence of these exotics
likely points to the influence of explicit gluonic degrees
of freedom.

FIG. 3 (color online). Overlaps, Z, of a selection of operators
onto states labeled by m=m� in each lattice irrep, ���. Z’s are
normalized so that the largest value across all states is equal to 1.
Lighter area at the head of each bar represents the one sigma
statistical uncertainly.
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Figure 3 shows that the third excited vector state
(m=m� � 1:35, marked with a †) has a qualitatively differ-
ent pattern of Z values compared to the lighter vectors.

Notably, there is large overlap with the ð��D½2�
J¼1ÞJ¼1

operator. D½2�
J¼1 corresponds to the commutator of two

covariant derivatives which vanishes in the absence of a
gluonic field. This commutator is proportional to the field
strength tensor and so the significant overlap hints at a
gluonic component. This suggests an identification of this
state as a crypto-exotic vector hybrid, although the nonzero

overlap onto ~�c�i
~c suggests some mixing with a conven-

tional vector state.
Two-meson states.—We might expect to observe an

abundance of two-meson states above 2m� � 0:85m�,
but such states are not apparent in our extracted spectrum.
This is most clearly seen in the A��

1 channel where the
lightest state extracted is a J ¼ 4 state above 1:5m�, while
a pseudoscalar-vector state with the minimum relative
momentum allowed in our finite box would be expected
close to 1:2m�. The operators used in this study featured
only a single c , �c field pair and so do not have overlap
onto quark Fock states higher than q �q. QCD dynamics can
act to mix q �q Fock states with two-meson basis states to
form mesonic eigenstates. This mixing is expected to be
significant when a discrete lattice two-meson state is de-
generate with a ‘‘single meson’’ to within that meson’s
continuum decay width. At this relatively heavy quark
mass, we expect low-lying resonances to have small widths
due to reduced phase-space for their decay and hence for
there to be only small mixing with two-meson states,
perhaps explaining our lack of observation of such states.
A calculation similar to the one reported herein has been
carried out on a lattice of spatial extent �2:4 fm. The
extracted spectrum is found to be identical within statisti-
cal fluctuations to that presented here. This is more evi-
dence that we are not seeing two-meson states since their
allowed relative momentum, and hence their energy levels,
would have changed significantly. These issues can be

properly investigated by including in the variational basis
operators featuring a product of two fermion bilinears,
expected to have good overlap onto two-meson states.
This work is underway.
Summary.—We have demonstrated a lattice QCD opera-

tor construction that enables the identification of contin-
uum spin with some confidence. Using distillation
technology to construct the correlators, and a variational
analysis to study them, we have extracted an excited-state
spectrum featuring well-determined states with exotic
quantum numbers and, for the first time, states of spin 4.
It is notable that our extracted spectrum has both fea-

tures of the n2Sþ1LJ state assignment of bound-state quark
models and also states that do not seem to lie within that
classification. We believe that this study is seeing a full
spectrum of QCD mesons which includes exotic and non-
exotic hybrid mesons [8].
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FIG. 4 (color online). A selection of Z values across irreps ��� for states suspected of being J ¼ 2, 3, 4. Left to right operators are

ða1 �D½1�
J¼1ÞJ¼2, ð��D½2�

J¼2ÞJ¼2, ð�2 �D½2�
J¼2ÞJ¼2, ða0 �D½3�

J13¼2;J¼2ÞJ¼2, ðb0 �D½3�
J13¼1;J¼2ÞJ¼2, ða1 �D½3�

J13¼0;J¼1ÞJ¼2, ð��D½2�
J¼2ÞJ¼3,

ð�2 �D½2�
J¼2ÞJ¼3, ða0 �D½3�

J13¼2;J¼3ÞJ¼3, ða1 �D½3�
J13¼2;J¼3ÞJ¼3, ða1 �D½3�

J13¼2;J¼2ÞJ¼3, ðb1 �D½3�
J13¼1;J¼2ÞJ¼3 and ða1 �D½3�

J13¼2;J¼3ÞJ¼4.
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