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The computer simulations of fluctuational dynamics of an annular system governed by the sine-Gordon

model with a white noise source are performed. It is demonstrated that the mean escape time (MET) of a

phase string for an annular structure can be much larger than for a linear one and has a strongly pro-

nounced maximum as a function of system’s length. The location of the MET maximum roughly equals

the size of the kink-antikink pair, which leads to evidence of a spatial crossover between two dynamical

regimes: when the phase string escapes over the potential barrier as a whole and when the creation of kink-

antikink pairs is the main mechanism of the escape process. For large lengths and in the limit of small

noise intensity �, for both MET and inverse concentration of kinks, we observe the same dependence

versus the kink energy Ek: � expð2Ek=�Þ for the annular structure and � expðEk=�Þ for the linear one.
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The noise-induced dynamics of solitary structures in
multistable systems is of great interest in many branches
of physics [1]. The sine-Gordon model, often considered in
this context, was used for the description of Josephson
oscillators and transmission lines [1–8], vortex transistors
[9], dislocation theory, and charge density waves in dielec-
trics, liquid crystals (see [1] for other possible applica-
tions), and DNA-promoter dynamics [10]. One of the most
important applications of this model is the description of
vortex dynamics in the qubits and their readout electronics
[5]. To perform the nondestructive readout from qubits,
several designs have been suggested, see, e.g., [4,8], which
utilize either annular or linear Josephson transmission
lines. Because of mathematical difficulties, the temporal
characteristics of the noise-induced nucleation of kinks
versus the system’s length and geometry have not been
studied either analytically or numerically. The results of
[11–14] are related to the limit of large lengths. Moreover,
even in this limit there have been discussions about the
temperature dependence of the kink lifetime [12–14].
Therefore, up to now there is no understanding of the
optimal length and geometry of spatially extended struc-
tures, leading to maximal escape times (i.e., to minimal
noise-induced errors).

The quantity of our interest is the mean escape time
(MET) of the phase string in a spatially extended structure.
The MET is usually the main experimentally relevant
characteristic, e.g., in Josephson junctions the MET is the
mean time until the generation of noise-induced voltage
pulse, which can be measured directly. Our aim is to study
the MET of a phase string via computer simulation of the
sine-Gordon equation with a white noise. We address the
question about the temperature dependence of the MET for
different geometries (annular or linear) of the structure and
its length. We demonstrate that the fluctuational stability of
the annular structure is much higher than for the linear one,

and we specify the optimal length of the former, where the
noise-induced errors are minimized.
The sine-Gordon equation for the variable’ðx; tÞ has the

following form (normalized view):

�
@2’

@t2
þ @’

@t
� @2’

@x2
¼ i� sinð’Þ þ ifðx; tÞ: (1)

The boundary conditions depend on the geometry of the
structure, and in the linear overlap case (free boundary
case) they have the form:

@’ð0; tÞ
@x

¼ @’ðL; tÞ
@x

¼ 0; (2)

while in the annular case, the periodic boundary conditions
have to be used:

’ð0; tÞ ¼ ’ðL; tÞ þ 2�n;
@’ð0; tÞ

@x
¼ @’ðL; tÞ

@x
: (3)

Here � ¼ 1=�2, � is the damping, i is the bias force
density, ifðx; tÞ is the fluctuational force density, and L is

the dimensionless length of the considered system. In the
case where the fluctuations are treated as the white
Gaussian noise with zero mean, its correlation function is

hifðx; tÞifðx0; t0Þi ¼ 2��ðx� x0Þ�ðt� t0Þ; (4)

where � is the dimensionless noise intensity.
Further, we restrict ourselves by considering the over-

damped case � ¼ 0:01, similar to Ref. [11–13]. The com-
parison with the small damping case � � 1 for the linear
structure (1) and (2) has been performed in [15], and the
monotonic increase of the METwith the increase of � has
been observed; so if � ¼ 10, 100, one will get for �=

ffiffiffiffi
�

p
roughly the same values as in the presented figures. In
terms of Josephson junctions (where the spatial coordinate
would be normalized to the Josephson penetration depth),
time in Eq. (1) is normalized to the characteristic frequency
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[15] rather than to the plasma frequency [6,7], and the
noise intensity � is proportional to the temperature and
inversely proportional to the critical current density, while
the damping does not enter there [15], satisfying the
fluctuation-dissipation theorem [16].

Initially, the phase string ’ðx; 0Þ is located in a potential
minimum ’0 ¼ arcsinðiÞ (see Fig. 1, dashed lines), so
there are no kinks in the system. Because of the effect of
fluctuations, the string ’ðx; tÞ after some time will escape
from the initial potential minimum to the next one of the
potential uð’Þ ¼ 1� cosð’Þ � i’ (see Fig. 1, solid
curves). At large lengths, it is expected that in the annular
structure, due to boundary conditions (3), the escape occurs
via the creation of kink-antikink pairs, while in the linear
structure in the case (2), the single kinks are created at
boundaries [17].

TheMET is defined as the mean time of’ residing in the
considered interval [��, �] [18,19], where PðtÞ is the
probability that the phase is located in the initial potential
well:

� ¼
Z þ1

0
twðtÞdt ¼

Z þ1

0
PðtÞdt; wðtÞ ¼ �@PðtÞ

@t
: (5)

Here wðtÞ is the probability density of escape time (see
[19,20] for details). In difference with the mean first pas-
sage time approach, the definition (5) accounts for possible
retrapping of the phase string in the initial potential well.
The probability PðtÞ is computed numerically in the fol-
lowing way: if at the current moment of time t > 0 the
realization ’ðx; tÞ is within the interval [��, �], the
probability for the current spatial point of the realization
is unity and otherwise zero. The averaging procedure over
both N realizations and over spatial coordinate x from 0 to
L is performed, and finally the required probability PðtÞ is
obtained. Numerical solution of the sine-Gordon equation
(1) with the boundary conditions (2) and (3) has been
computed on the basis of implicit finite-difference scheme
[15] with the account of a white noise source. Typical
values of discretization steps are �x ¼ �t ¼ 0:1–0:02
and the number of realizations are N ¼ 2000–10 000.

Let us plot the MET for the annular structure as a
function of length for different values of noise intensity
� and bias force (see Fig. 2). In contrast to the behavior of
the MET for the linear geometry with the uniform bias
distribution [15] where the MET first increases with the
increase of the length and after that remains constant, the
MET has a strongly pronounced maximum for the annular
case. For the linear structure, the ‘‘critical length’’ L � 5,
where the MET reaches the constant, is connected with the
possibility for a kink to enter and settle between bounda-
ries. From Fig. 2 one can see that the location of the
maximum of the MET for the annular structure is twice
larger than the critical length for a linear one. Since bound-
ary conditions (3) admit only the creation of kink-antikink
pairs, the size of such a pair fits the location of the maxi-
mum rather well. This means that the location of the
maximum corresponds to the crossover of two regimes:
when the phase string escapes as a whole and when it
escapes creating kink-antikink pairs.
It is interesting to plot the MET for different values of

bias force (i ¼ 0:1, 0.2, 0.36, 0.7, and 0.9) and noise
intensity (� ¼ 1:55, 1.22, 0.85, 0.3, and 0.077), choosing
� in such a way that the value of � at the maximum is
approximately the same (Fig. 3). In this case, the location
of the maximum of the MET for the annular structure
slightly changes but still remains around L � 10.
Considering the tendency of the MET for decreasing �
down to 0.2 for the bias force i ¼ 0:7, we have observed
slow migration of the position of the maximum of the MET
from L � 9 to L � 11. If the bias force is close to the
critical value, e.g., i ¼ 0:99, and the noise intensity is
extremely low, � ¼ 0:001, we have observed the shift of
the maximum of the MET to L � 15, but the qualitative
behavior remains the same. The latter case is, however, out
of scope of the present Letter and will be studied
elsewhere.
The result, indicating the optimal length L � 10, where

the maximal noise immunity is reached, is of crucial

FIG. 1 (color online). Potential profile uð’Þ ¼ 1� cosð’Þ �
i’, i < 1. The dashed line is the initial profile of the phase string.
The solid curve is the string in the process of thermally induced
escape to the adjacent potential well. (a) Linear structure: one
kink is created at the boundary. (b) Annular structure: only kink-
antikink pairs can be created due to the absence of boundaries.

1 10 100

10

100

1000

L

τ

FIG. 2 (color online). The MET for the annular and linear
structures.
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importance for creation of fault-tolerant cryoelectronics
[4,5] on the basis of long Josephson junctions. While for
such devices quantum fluctuations are of importance, due
to the general properties of the system, this should affect
the actual value of the MET only; however, the location of
the maximum should vary weakly. In the following, we
choose the length, for which the maximum of the MET is
approximately reached, and investigate the dependence of
� versus noise intensity � (temperature dependence, since
� is proportional to the temperature).

As one can see from Fig. 4, in the limit of small noise
intensity the factor of the exponent �� expðE=�Þ, which
fits the computed data, is twice larger for the annular
structure (E ¼ 2Ek) than for the linear one (E ¼ Ek),
where Ek is the kink energy. This confirms that for the
annular structure for such a length, the mechanism of
creation of kink-antikink pairs predominates, while for

the linear one, the escape over barrier mostly occurs due
to the creation of single kinks at boundaries (see Fig. 1).
The considered range of � is rather large for practical

applications, e.g., for Josephson junctions, where � � 1
means that the corresponding thermal current is of the
order of critical current. The range of really small � is
not numerically tractable due to exponential dependence of
the MET, which leads to exponential increase of the cal-
culation time with the decrease of �. From the presented
plots one can, however, calculate �ð�Þ for any desired
values of � � 1, simply extrapolating the straight lines.
For the annular structure of large lengths L � 10, the

corresponding numerical factor, the kink energy 2Ek,
agrees well with the predictions of Fig. 4 in Ref. [11].
However, for smaller bias i ¼ 0:1 (Fig. 5) the half of the
value given by Fig. 4 of Ref. [11] gives good agree-
ment with the MET for linear structure, while for the
annular one it slightly overestimates the computer simula-
tion results. For relatively large values of bias starting
approximately from i � 0:5 and L � 10, the kink energy
Ek agrees well with the formula for the potential barrier
height of the potential uð’Þ ¼ 1� cosð’Þ � i’, multi-

plied by a factor of 4: Ek ¼ 4�uðiÞ ¼ 4ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i2

p
þ

2i½arcsini� �
2�Þ, which for i ¼ 0 leads to the rest energy

of the kink Ek ¼ 8, as it must [1,11].
From Fig. 2, one may expect that at large lengths the

temperature dependence of the annular structure is
changed since the MET for linear and annular cases nearly
agree. This is, however, true in the large-to-moderate range
of noise intensity only. As one can see from Fig. 5, for the
lower noise intensities the MET for the annular structure
with the length L ¼ 100 perfectly fits the same dependence
as for the length L ¼ 12 and with the activation factor of
almost twice the activation factor in the linear case. This
signals that, namely, the prefactor of the MET is respon-
sible for the maximum of the MET, which in a limit � � 1
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FIG. 4 (color online). Comparison of the temperature depen-
dences of the MET for the annular and linear structures with the
length L ¼ 10 and bias i ¼ 0:5, 0.7.
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FIG. 5 (color online). Comparison of the temperature depen-
dences of the MET for the annular and linear structures with
different lengths and bias i ¼ 0:1.
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FIG. 3 (color online). The MET for different values of bias
current and noise intensity for the annular structure. It is seen
that the location of the maximum of the MET remains around
L � 10.
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gives a difference by roughly a factor of 6 between �ðL ¼
12Þ and �ðL ¼ 100Þ.

Since we have considered not the kink lifetime [11–13]
but the MET, it is wrong to compare our results with the
previous predictions directly. However, we have managed
to calculate the concentration of kinks n in the structures
for the zero bias force value i ¼ 0. The results are pre-
sented in Fig. 6, where the inverse concentration 1=n is
plotted versus the inverse noise intensity.

One can see that for the annular case 1=n perfectly
scales as expð16=�Þ, while in the linear case 1=n is pro-
portional to expð8=�Þ. Since the rest energy of a kink is
equal to 8, see [1,11], this is a clear indication that in the
linear structure, the single kinks predominate, while in the
annular structure, the kink-antikink pairs are fluctuation-
ally formed. Comparing with the formula for the concen-
tration of kinks from [11,13],

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ek=��

q
expð�Ek=�Þ; (6)

one can see that the kink concentrations for both linear
and annular structures tend to approach the prediction of
Eq. (6) with a decrease of � and an increase of the length,
which should be so, since for L ! 1 the particular bound-
ary conditions should not be important. Therefore, for both
characteristics, the MET and the inverse concentration of
kinks, we observe the same dependence versus the kink
energy Ek: � expð2Ek=�Þ for the annular structure and
� expðEk=�Þ for the linear one.

In conclusion, we have demonstrated that fluctuational
stability of an annular structure is much higher than for a
linear one and specify the optimal length of the former.
This optimal length, when the mean escape time reaches
the maximum, approximately equals to two critical lengths
for the corresponding linear structure, which is also the
size of a kink-antikink pair, fluctuationally formed during
the escape process. This leads to the evidence of spatial
crossover between two dynamical regimes: when the phase
string escapes over the potential barrier as a whole and

when the creation of kink-antikink pairs is the main mecha-
nism of the escape process. The obtained results seem to be
rather general and should also be observed in other models,
such as the �4 model [21], where the same temperature
dependence as in [13] was demonstrated. Finally, we note
that if there is one kink traveling in an annular structure [4],
the optimal length, where the maximal noise immunity will
be reached, is obviously around L � 15–20 (the single
kink size plus the size of a kink-antikink pair).
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FIG. 6 (color online). Inverse concentration of kinks versus
inverse noise intensity in the absence of bias force i ¼ 0.
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