PRL 103, 257403 (2009)

PHYSICAL REVIEW LETTERS

week ending
18 DECEMBER 2009

Optomechanics with Surface-Acoustic-Wave Whispering-Gallery Modes
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A surface-acoustic wave (SAW) creates its own high-Q ultrasmall-volume whispering-gallery mode
(WGM), different from the usual bulk acoustic WGMs, in an optical dielectric WGM resonator. We show
that it is possible to realize an externally controllable, efficient triply resonant optomechanical interaction
between two optical WGMs and the SAW WGM and to use such an interaction in various sensor

applications.
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The prediction of surface-acoustic waves (SAWs) [1]
and the study of whispering gallery modes (WGM) in
acoustic resonators [2] are amongst numerous contribu-
tions of Lord Rayleigh, nee John William Strutt, to the
physics of waves. In the hundred or so years that followed
the inception of these branches of acoustics, SAWs have
been extensively studied and widely used in various
electronic applications, particularly as sensors, oscillators,
and filters. The notion of WGM resonators has been ex-
tended to photonics to serve as a tool in many optical
applications. With the advent of cavity optomechanics in
recent years (see [3,4] for review), it is natural to ask if
there is a way to devise a system where optical WGMs
interact with, or lead to, mechanical SAWs. At first glance,
it might be concluded that optical and SAW WGMs do not
interact efficiently because SAWs do not change the vol-
ume of the resonator. In this work, we describe a system of
three WGMs in a dielectric resonator, whereby two optical
modes combine to generate and control a mechanical SAW.
The resulting acoustic wave is of high quality factor (Q)
and can be optically cooled to quantum level. Such a sys-
tem, interesting from the scientific point of view, can have
important applications in quantum technologies and will
significantly enhance the sensitivity of SAW sensors. As an
example of these applications, we describe a high sensi-
tivity “‘absolute temperature’ thermometer capable of op-
eration outside the controlled environment of metrological
laboratories.

Optomechanics relies on interacting high-Q optical and
mechanical modes [3,4] that can be used for manipulation
of both classical and quantum states of the optical as well
as mechanical modes. For instance, the dynamic backac-
tion of light onto a long-lived mechanical mode of a
resonator allows either a significant reduction of the
mode temperature or an efficient transfer of the optical
energy to the mechanical mode, depending on the experi-
mental conditions. The temperature reduction results from
conversion of thermal phonons, populating the mechanical
mode, into optical domain, similar to the case of laser
cooling in atomic systems. Hence, cooling occurs when
frequency of light increases as a result of interaction with
the mechanical mode. Enforced decrease of frequency of
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the scattered light results in heating and oscillation of the
mechanical mode.

The basic practical task of cavity optomechanics is
related to fabrication and integration of resonant micro-
mechanical and optical elements, which interact effi-
ciently. The efficiency of the interaction increases with
an increase of the Q factor, as well as a decrease of the
geometrical dimensions of both optical and acoustic sys-
tems. Microtoroidal WGM resonators, combining ultra-
high Q optical and mechanical modes, as well as ultra-
low mode volumes, belong to the class of very promising
cavity optomechanical systems [5,6]. Mechanical fre-
quency of microtoroids is comparably small because of
the low stiffness of the structure. Spherical WGM reso-
nators have been used to increase the frequency up to
I GHz [7]. Further increase of the acoustic frequency
is problematic because this optomechanical system in-
cludes one optical WGM and one mechanical mode, so
the Q factor of the optical mode must be low enough to
accommodate both the pumping and the Stokes (red-
detuned) waves, and lowering the Q factor results in a
reduction of the interaction efficiency. The pumping laser
frequency can be detuned far from the WGM resonant
frequency in a way such that the optical mode accommo-
dates the Stokes sideband (the resolved-sideband technique
[8]). However, it leads to a significant increase of the
threshold optical power required for the oscillations to
start.

Higher frequency interaction accompanied by increased
interaction efficiency is possible if the Stokes (or anti-
Stokes) light is scattered to a high-Q WGM [9,10] while
the pump is resonant with another WGM. Phase matching
between optical and acoustic modes represents a major
difficulty in this case. The triply resonant stimulated
Brillouin scattering (SBS) was demonstrated recently in
overmoded WGM resonators [11,12]; nonetheless, gener-
alized triply resonant interaction is usually forbidden. It is
also worth noting that SBS frequency is basically given by
the properties of the resonator host material and that mor-
phology of the resonator is less important; thus, the cavity
enhanced SBS uses bulk, not surface, acoustic modes.
Another disadvantage of SBS is the high absorption of
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the hypersound waves so that the finesse of the acoustic
“mode” can be less than one [11].

In this work, we consider and study a system demon-
strating a strong triply resonant interaction of two optical
WGMs and a circular acoustic mode created by a SAW [1]
propagating at the surface of an optical WGM resonator
[13—17]. The surface-acoustic mode is different from ordi-
nary acoustic WGMs because of its small volume and
nearly zero dispersion [13], so we call this mode a
surface-acoustic-wave whispering-gallery mode (SAW
WGM). Interaction of an optical WGM with low order
low frequency SAW WGM, resembling properties of bulk
WGMs, was experimentally demonstrated in [18]. We
propose an approach for realization of interaction of a
high-order, high frequency SAW WGM with two ultra
high-Q optical WGMs, which will result in high efficiency
optomechanical processes even in larger W resonators. We
show that a proper shaping of the resonator results in a
significant reduction of the SAW WGM volume that fur-
ther increases the process efficiency. To achieve phase
matching between optical and acoustic waves, we propose
to use the interference patterns generated at the surface of
the WGM resonator [19,20]. We have found that such
patterns can be created even by WGMs having different
polarizations, which significantly simplifies the control of
optomechanical processes in resonators with birefringent
host material.

The efficiency of optomechanical interaction depends
on the volume and mass of the acoustic mode [3,4]. Let us
estimate those parameters for SAW WGMs. An analytical
solution of this problem is rather involved for any resonator
shape [18]. We simplify the problem assuming that (i) the
generalized toroidal WGM resonator can be approximately
modeled as a cylindrical resonator with radius a and some
effective thickness L to describe high-order WGMs [the
model works when the resonator is large enough compared
with the acoustic wavelength (277a >> Ag)], (ii) the top and
bottom surfaces of the cylinder do not move, (iii) the
resonator host material is incompressible, and (iv) the
radial vibrational displacement resembles one in a planar
SAW [1]. The complex components of the displacement
vector of the SAW WGM belonging to the basic mode
sequence can be represented as
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where (r, ¢, z) are cylindrical coordinates (a = r), k> =
Qm/Ag)? = (m/a)?* + (w/L)*, Q = kV,, V, is the speed
of the SAW that is a slightly less than the speed of shear
waves in the material, é(t) is the annihilation operator

describing mechanical displacement, m* =~ 5.2pal \g/,
p is the density of the material. There are cases where m*
represents the effective mass [21] of the SAW mode
[Eq. (13)] if the strain-induced change of the refractive
index, which also influences the interaction, is neglected.

Let us estimate the mass of the acoustic mode for a Z-cut
lithium niobate resonator having ¢ = 2.5 mm and L =
50 wm. For this material, we have p =3 g/ cm?® and
V., =3.74 X 10° cm/s [15]. Assuming that Q/(27) =
200 MHz, we find Ag = 27V,/Q = 18.7 um and m* =
5.5 pmg. This mass is 2 orders of magnitude smaller as
compared with the mass of the lowest radial mode
(~pa”L) and an order of magnitude less compared with
the mass of the conventional bulk acoustic wave WGM of
the resonator. The mass can be further reduced if the
resonator is shaped in a special way. A protrusion on the
surface of the resonator can confine the acoustic wave
much tighter than the boundaries of the resonator them-
selves, as shown for the case of optical WGMs in [22]. The
quality factor of SAW WGM (Qy) is high. It exceeds Q¢ =
10* for the acoustic modes in a lithium niobate sphere [15].
Hence, this system is quite promising for optomechanical
applications.

High-order SAW WGMs are nearly of shear nature. This
makes them different from mostly dilational modes such
as, for example, radial or compression WGMs in the case
of SBS [11,12]) used in cavity optomechanics. We propose
to use an interference of two optical WGMs to realize the
phase-matched interaction with the shear modes, in anal-
ogy with the external excitation of SAW WGMs with
photo-acoustic effect of interference fringes scanned at
the phase velocity of SAW [23].

Interference of optical WGMs creates a pattern at the
surface of a WGM resonator [19,20] which is stationary if
WGMs have the same frequency, but its speed (Vp) is
nonzero if the frequency difference is nonzero. Two
WGMs characterized with azimuthal numbers m; and m,
and frequency difference A w create an interference pattern
moving with velocity

aAw
VP = — , (4)
mp — my
in accordance with [19]. The WGMs resonantly interact
with the SAW WGM if its velocity matches the velocity of
the SAW and Aw = Q, i.e.,

al)

V,=——.
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It is important to note that Eqgs. (4) and (5) are valid for
thick enough resonator as well as long enough SAW
WGMs (L > Ag and m;, > m; — m, = m). More gen-
erally, the phase matching conditions should be written as
m; —my =mand Aw = ().

We propose two practical ways to fulfill Eq. (5). One is
based on using optical WGMs having the same polariza-
tion, but different spatial field distributions. The WGM
wave number for the mode, polarized within the mode
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plain, can be presented as
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with n?w?/c? = kj,, + 7 /L?, c is speed of light in the
vacuum, » the index of refraction of the resonator material,
and a, the gth root of the Airy function [Ai(—aq) = 0].
Using Egs. (5) and (6), we find the phase matching condi-
tion
21 /3 2ﬂ ~ 1/3 _ 1/3 7
s = @Hm, agm;’". (7)
Equation (7) can be fulfilled in a comparably small reso-
nator. The acoustic wave with frequency Q/(27) =
200 MHz is phase matched with two optical waves with
q; = 1 and ¢, = 13 propagating in a LiNbO; resonator
with diameter 2a = 1 mm. The radial distribution for the
mechanical deformation and optical field distribution is
presented in Fig. 1. Lower frequency SAW WGMs require
less difference in ¢ number of the optical modes.

The described technique of phase matching of optome-
chanical interaction requires trimming of the resonator size
and using a final temperature tuning to fulfill the require-
ment. These are difficult steps to practically implement.
We propose another method to simplify this task. The idea
is based on the creation of optomechanical interactions
involving optical WGMs with different polarization.
Such modes can be tuned one with respect to the other
using either electro-optic effect or temperature till the
frequency difference of the two WGMs coincides with
the frequency of the corresponding acoustic mode (there
are crystals, e.g., LiNbO;, where the refractive index
change strongly depends on the polarization of light).
Tuning is possible because (i) the electro-optic interaction
does not change SAW frequency, and (ii) the frequency
difference between oppositely polarized WGMs is more
sensitive to the temperature change (~GHz/K) than the
SAW frequency (<MHz/K).
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FIG. 1 (color online). Radial distributions describing phase-
matched surface-acoustic (a) and two optical (b) WGMs.

It is known that two plane waves with orthogonal polar-
izations do not interfere and, consequently, do not produce
interference fringes to drive the acoustic SAW WGM. The
same is related to a restricted number of shapes of WGM
resonators, the spectra of which can be described using the
method of separated variables where TE-TM mode divi-
sion makes sense. TE and TM mode families of such
resonators are orthogonal locally

1
= o > € (DE () Ey(r) =0, (8)
LJj

where Ej;(r) and E,;(r) stand for the amplitudes of the
electric fields of the oppositely polarized modes, the dis-
tribution of the dielectric susceptibility €, ;(r) is deter-
mined by the stationary boundaries of the resonator. In
the majority of resonators, modes are quasiorthogonal only
with respect to the infinite volume, not locally:

1
u = g [V %Ei’j(r)Eu(r)Ezj(r)dl‘ =~ (. (9)

If a WGM SAW is excited in such a resonator, the modes of
different polarizations can interact, and the interaction
energy can be nonzero

MU= f ZAe,j(r)E,,(r)Ezj(r)dr 0. (10)

The generalized variation of the dielectric susceptibility
resulting from the SAW is given by expression

A€ j(r) = agjinutg p(r), (11)

where a;j;,, is a tensor of forth rank given by the properties
of the resonator host material, taking into account the
change of the dielectric susceptibility of the material due
to the elasto-optic interaction. The elasto-optical terms of
tensor a;j;,, can generally result in optomechanical inter-
action between the SAW WGM and the TE and TM
WGMs of any (even a spherical) resonator made out of a
crystalline material with certain asymmetry, like quartz.

The phase matching condition for the basic sequence of
quasi-TM and TE WGMs and a SAW WGM is rather
simple if the resonator host material possesses high enough
birefringence:

L)

N n, — n,l, (12)
where n, and n,, are the extraordinary and ordinary indexes
of refraction, and A is the optical wavelength. For example,
in lithium niobate n, =2.12 and n, =22 at A=
1.55 pm so that Ag = 18.7 um. Moreover, because the
optical spectrum of a realistic WGM resonator is dense,
other phase-matched modes with other scattering frequen-
cies will exist.

The phase-matched interaction of a high-order SAW
propagating in an incompressible material and having
radial distribution dimensionality comparable with or less
than the radial distribution of the optical WGMs can be
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described with an interaction Hamiltonian

N ho1 . .
o~ - Tt +
U hw\’zm*ﬂa (A Afct + Hee), (13)

where A, and Az are the annihilation operators for the
optical modes. Interestingly, (i) the Hamiltonian is similar
to the Hamiltonian derived for the optomechanical systems
involving dilational waves, and (ii) the interaction effi-
ciency does not depend on the acoustic frequency because
m* ) is frequency independent for SAWs. Further study is
required to prove that cavity optomechanical interaction of
a phase-matched SAW WGM and two optical WGMs
results in the strongest possible binding for any acoustic
and any two optical modes excited in the same resonator.
This conclusion follows indirectly from the fact that SAW
has the smallest speed in the material. To derive a more
strict expression for the interaction Hamiltonian, one needs
to take into account the SAW-induced refractive index
changes. The strict derivation will be presented elsewhere.

The Hamiltonian (13) is rather general, so all the pre-
viously developed optomechanical experiments can be
performed in the triply resonant system. For example, it
can be used for primary temperature measurements of the
resonator without requiring adjustable temperature-
dependent parameters. The thermometry can be realized
because thermal phonons can be efficiently upconverted
into optical domain. Because the energy of an optical
quantum is much larger than the thermal energy kzT,
optical photons can be counted even at room temperature.
Hence, the mechanical thermal phonons also can be
counted at room temperature, if we use this optomechan-
ical technique. The power of the blue-shifted optical side-
band exiting the resonator is ultimately given by
2yyhwi,,, where 2y, is the full width at the half maxi-
mum of the acoustic resonance that can be accurately
measured, and 71, is the averaged number of the thermal
phonons in the acoustic mode if the optical pump is absent.
The optimum sensitivity is achieved when efficient opto-
mechanical coupling is realized. In this way, the optome-
chanical system can be used as a very sensitive primary
thermometer.

To conclude, we have studied and shown theoretically
that it is possible to realize efficient coupling between an
acoustic whispering-gallery mode created by a surface-
acoustic wave traveling along the rim of a dielectric optical
resonator, and two optical whispering-gallery modes ex-
cited within the resonator. The optical WGMs could have
either identical polarizations and different mode numbers
or different polarizations, or both, to achieve optomechan-
ical phase matching. The described system is attractive
because (i) the surface-acoustic mode has a large quality
factor, large frequency, and small mass; (ii) the optical
modes can have large quality factor independent on the
acoustic frequency. In addition, the acoustic modes can be
used in various sensor applications [24], and an all-optical
interrogation of them increases the efficiency of the sen-

sors. Optomechanical cooling of the SAW WGM and high
frequency optomechanical oscillation is possible. As an
example of applications opened up by SAW WGMs, a
sensitive primary thermometer based on this system can
be realized.
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