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We present experimental results approximating the Jones polynomial using 4 qubits in a liquid state

nuclear magnetic resonance quantum information processor. This is the first experimental implementation

of a complete problem for the deterministic quantum computation with one quantum bit model of

quantum computation, which uses a single qubit accompanied by a register of completely random states.

The Jones polynomial is a knot invariant that is important not only to knot theory, but also to statistical

mechanics and quantum field theory. The implemented algorithm is a modification of the algorithm

developed by Shor and Jordan suitable for implementation in NMR. These experimental results show that

for the restricted case of knots whose braid representations have four strands and exactly three crossings,

identifying distinct knots is possible 91% of the time.
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Quantum information processors have the potential to
solve some problems exponentially faster than current
classical methods [1]. While much effort has been concen-
trated on the most conventional circuit model of computa-
tion which involves preparation of pure fiducial quantum
states, other models of computation, where only one pure
quantum bit is required, still offer efficient solutions to
classically intractable problems. Deterministic quantum
computation with one quantum bit (DQC1) is such a model
[2]. It extracts the power of 1 bit of quantum information
alongside a register of many qubits in a completely random
state. Study of DQC1 was originally motivated by liquid
state nuclear magnetic resonance (NMR), which is a high
temperature ensemble model of quantum computation.
Although this model of computation is weaker than con-
ventional models with many pure qubits, it has been shown
to have several important applications where classical
methods are inefficient: simulating quantum systems [2],
estimating the average fidelity decay under quantum maps
[3], and quadratically signed weight enumerators [4].
Additionally, the approximation of the Jones polynomial
at the fifth root of unity has recently been shown to
completely encapsulate the power of DQC1 [5]. DQC1
algorithms have been experimentally implemented in op-
tics [6] and liquid and solid state NMR [7–9]—none of
which has been shown to be DQC1 complete. In [8], the
authors implement a DQC1 algorithm on two qubits to
evaluate the Jones polynomial at various points for specific
knots. This Letter describes the implementation of an
instance of a DQC1-complete algorithm [5], which scales
for any size knot.

Unlike its name suggests, DQC1 does not require a
completely pure qubit to provide an advantage over known
classical methods, but rather a small fraction of a pure
qubit. This pseudopure state is almost completely mixed
with a small bias towards the ground state, and is used as

the control qubit in the DQC1 algorithm. A unitary is
performed on the qubits in the completely mixed state
and is controlled by the pseudopure qubit (Fig. 1).
Measurements of h�xi and h�yi yield the real and imagi-

nary parts of the trace of the unitary, normalized by the
amount of polarization on the pure qubit.
Applications for the Jones polynomial are extensive in

physics; for example, the fields of statistical mechanics,
quantum field theory, and quantum gravity would benefit
from an efficient method for approximating this polyno-
mial [10]. Knot invariants help to solve a fundamental
problem in knot theory: determining if two knots, defined
as the embedding of the circle in R3, are topologically
different, up to ambient isotopy. Two knots can only be
confirmed identical if one can be maneuvered into the other
by a sequence of Reidemeister moves, which keep the
topological properties of knots intact. This process is
very tedious as often the sequence of Reidemeister moves
requires an increase in the number of crossings in the knot.
Even the simplest such problem of identifying the unknot,
a circle with no crossings, has been shown to be contained
in the complexity class NP [11]. Knot invariants, such as
the Jones polynomial, have the same value for different
representations of the same knot. In other words, if a knot
invariant evaluates to different values for two knots, they
are guaranteed to be distinct. This makes them a welcome
alternative to sequences of Reidemeister moves.

FIG. 1. The DQC1 circuit where the pure qubit has a bias of "
towards the ground state. Measurements of h�xi and h�yi will
yield the real and imaginary parts of "TrðUnÞ=2n, respectively.
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Unfortunately, exact evaluation of the Jones polynomial at
all but a few points is hard for the complexity class #P [12].
Several efforts for finding quantum algorithms for the
Jones polynomial have been attempted and approximations
at several special points have been shown to be complete
for the complexity class BQP [13,14]. Largely building on
this work it was then shown that approximations of the
Jones polynomial for trace or plat closures at principal
roots of unity can be computed on a quantum computer
in polynomial time [15]. Later it was shown that for the plat
closure the problem is BQP complete [16,17]. The algo-
rithm developed by Shor and Jordan shows that approx-
imating the Jones polynomial at the fifth root of unity for
any knot is a complete problem for DQC1.

For the purposes of this algorithm, knots are described in
the discrete language of braid groups. Every knot can be
written as a braid, which is a series of strands crossings
over and under each other with loose ends at both the top
and bottom. Braids can then be converted into a knot by the
trace closure which connects the top and bottom ends of the
braid in sequential order. The braid group form strands Bm

is generated by s1 . . . sm�1 that denote elementary cross-
ings where si indicates the ith strand crossing over the (iþ
1)th strand and s�1

i indicates strand (iþ 1) crossing over

strand i. These elementary crossings satisfy the relations:
sisj ¼ sjsi for jj� ij> 1 and siþ1sisiþ1 ¼ sisiþ1si.

The implemented algorithm utilizes the Fibonacci rep-
resentation of the braid group Bn, which is described in the
context of the Temperley-Lieb recoupling theory [18]. In
this theory there are two particles p and �, which exhibit
the following properties: p interacts with another p to
create a p or a � particle, � interacts with a p to always
create a p particle, and two �’s never interact. Strings of
these particles create a basis in a complex vector space.
More details of this representation can be found in [18], but
for our purposes it suffices to state that for a braid with m
strands the basis vectors containmþ 1 elements of p’s and
�’s with the restriction that no two � particles be beside one
another. These basis vectors are then transformed into the
computational basis and unitary matrices �i, which repre-
sent each elementary crossing in the braid group, are
constructed. For the particular form of these unitaries,
please refer to [5].

The algorithm developed by Shor and Jordan approx-

imates the Jones polynomial at the single point t ¼ e2i�=5

by finding the weighted trace of a unitary that describes the
braid representation of the knot. The algorithm is modified
for this implementation and the varied portions are de-
scribed below. The primary difference is in the encoding
of the basis states. The Fibonacci basis vectors consist of
four distinct subspaces, only two of which are relevant for
the algorithm: the fm vectors of the form � . . .p and fm�1

of the form � . . . � , where fn ¼ ½1; 1; 2; 3; . . .� is the
Fibonacci sequence. These are the only two subspaces
that are encoded in this implementation. The Zeckendorf
representation, z0 ¼ 2n�1s1 þ

P
m�1
i¼2 siþs1fi converts the

Fibonacci basis vectors into integers that are then con-
verted to a nonsaturated computational basis. The second
notable difference is the method used to calculate the
weighted trace, defined as

WTr ¼ 1� ðtrace of subspace � . . . �Þ þ�

� ðtrace of subspace � . . .pÞ; (1)

where � ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden ratio. Implementing
these weights for our encoding is achieved by purifying the
second qubit, then applying a rotation taking j0i to
ð ffiffiffiffi

�
p j0i þ j1iÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ�
p

, which ensures that each subspace
receives the desired weight. The computational model now
contains two initialized qubits; however, this modification
does not change the computational power as DQC(k) is
known to have the same computational power as DQC1 for
k that can grow logarithmically with the total number of
qubits [5]. The extra basis states are accounted for in the
final calculation of the Jones polynomial. The circuit for
our evaluation of the Jones polynomial for braids with four
strands can be seen in Fig. 2. It is worthwhile to note that
the off-diagonal elements in the rotated pure qubit do not
contribute to the algorithm as the unitary matrices Un are
always block diagonal, thereby eliminating the off-
diagonal elements in the calculation of the trace. The state
of the top qubit at the completion of the algorithm is

� ¼ 1

2n�1ð1þ�Þ
1 WTrðUy

n Þ
WTrðUnÞ 1

 !

;

which upon measurement of h�xi and h�yi yields the real
and imaginary parts of M ¼ WTrðUnÞ=½2n�1ð1þ�Þ� re-
spectively, where n is the number of qubits in the bottom
register. The measured quantity M is then used to calcu-
late the approximation of the Jones polynomial VðtÞ, cor-
responding to the trace closure of the given braid at

t ¼ ei2�=5,

Vðei2�=5Þ ¼ ½�ðei2�=5Þ4�3w��1½2n�1ð1þ�ÞM� ��;
where � ¼ ð2n�1 � fmÞ�þ ð2n�1 � fm�1Þ and w is the
writhe of the braid, defined as the number of positive
crossings minus the number of negative crossings.

FIG. 2. Circuit diagram for the approximation of the Jones
polynomial for the knots whose braid representations consist of
four strands. The initial state given is the traceless deviation
matrix. The single qubit gates are the Hadamard and the rotation
for implementing the weights of the trace. The measurements
performed on the top qubit are expectation values of the Pauli x
and y operators.
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Liquid state NMR offers one of the most advanced
implementations of quantum information processors with
high fidelity control of multiple qubits [19]. The qubits are
a bulk ensemble of identical spin-1=2 nuclei that exhibit a
two-level energy structure in the presence of a strong
magnetic field. The ensemble of approximately 1020 mole-
cules is manipulated in parallel and an ensemble measure-
ment is performed using quadrature detection of the free
induction decay to give h�xi and h�yi. The algorithm

described above was demonstrated in liquid state NMR
for the set of knots whose braid representations have four
strands and three crossings. There are six distinct knots in
this set and hence, six distinct Jones polynomials. The goal
of the experiment is to distinguish between two distinct
knots given their braid representations. The subspaces of
interest have f4 ¼ 3 and f4�1 ¼ 2 basis states, respec-
tively; thus, the encoding of the basis states requires 3
qubits in the bottom register and a fourth as the control
qubit.

The experiment was implemented on a Bruker Avance
700 MHz spectrometer using the molecule transcrotonic
acid (shown in Fig. 3). The four qubits are experimentally
realized by the four carbon nuclei, synthesized to be
carbon-13, while the hydrogen are decoupled using the
WALTZ-16 [20] composite pulse sequence. C1 is our read-
out qubit whose initial state is the thermal state of � ¼
1þ "Z, C2 is purified to the pseudopure state j0ih0j, and
the remaining C3 and C4 are initialized to the completely
mixed state. The radio frequency (rf) pulses that imple-
ment the unitary transformations are numerically gener-
ated using the GRAPE algorithm [21,22] which starts from
a random guess and is then iteratively improved through a
gradient ascent search. The GRAPE pulses are optimized

to produce a fidelity jtrðUy
goalUsimÞj2=d2, where d is the

dimension of the Hilbert space of Ugoal, of no less than

0.998 and are designed to be robust to small inhomogene-
ities (�3%) in the rf control field. Each controlled-�i

unitary transformation is designed as a single pulse of
60 ms. The pulses are corrected for nonlinearities in the
pulse generation and transmission to the sample by mea-
suring the rf signal at the position of the sample using a
feedback loop and iteratively modifying the pulse accord-

ingly. Through the feedback loop the implemented pulse
can be measured and was found to have a simulated fidelity
of 0.99 after correction.
The resulting spectrum is fit and compared to a reference

spectrum, traditionally of the initial state, to give the
expectation value results. In this experiment, pulses whose
propagator was designed to be the identity were generated
using GRAPE to have the same length and the same
average power and fidelity as the controlled �i. These
pulses were implemented and used to create a reference
spectrum in an attempt to normalize some decoherence
effects. The state measured after three successive identity
pulses, totaling 180 ms had only 60% of the original signal
(see Fig. 4), indicating this as a crucial step in the experi-
mental procedure.
The algorithm was implemented for 18 different braids,

which correspond to 6 distinct Jones polynomials. The
results are displayed in Fig. 5. Systematic errors from
imperfect initial state preparation and decoherence not
captured by the reference state result in the offsets from
the theoretical values. The main contribution to the spread-
ing of the experimental points is the finite fidelity of the
optimal control pulses.
Two values of the Jones polynomial at best can distin-

guish between two knots if they are sufficiently far apart,
and at worst, give no information, as even evaluations of
the Jones polynomial that are identical would not be suffi-
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FIG. 4 (color online). The dashed (red) spectrum represents
the pseudopure state immediately after creation in the top (a)
graph. The solid (black) spectrum is the same pseudopure state
after 180 ms of pulses designed to perform the identity. In the
bottom graph (b), the solid spectrum (black) indicates the final
state of the experiment and it is compared to simulation [dashed
(blue)]. This particular experiment is for the knot whose braid
representation has crossings s1s2s3.
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cient information to conclude the two knots are identical.
This leads to two types of errors when interpreting the data:
passive and fatal errors. Passive errors occur when two
distinct knots are impossible to distinguish because of their
relatively close distance to one another, while fatal errors
occur when two identical knots are determined to be dis-
tinct. The success rate for determining whether knots are
distinct is calculated as the average of the percent of
distinct knots correctly identified and the percent of iden-
tical knots correctly indistinguishable. The error ellipses
give a direct method for determining if two knots are
distinct. If the error ellipses for a pair of knots do not
overlap then it is inferred that the knots are distinct,
whereas if the two ellipses overlap no information is
gained. For the confidence region plotted in Fig. 5, 134
of the possible 135 pairs of distinct knots are correctly
distinguished with 3 fatal errors of a possible 18, corre-
sponding to a success rate of 91%.

Approximation of the Jones polynomial is an example of
a classical problem that appears intractable, but that can be
solved using a one clean qubit quantum computer. This is
the first experimental implementation of a DQC1-complete
problem, and is performed in liquid state NMR with four
qubits, resulting in a 91% success rate for braids with four
strands and a total of three crossings. In future work it will
be interesting to see how the values of the Jones polyno-
mial spread as you scale to larger knots and what size knot
can be experimentally implemented before noise and con-
trol errors destroy the quantum advantage.
G. P. would like to thank M. Ditty for his technical

expertise with the spectrometer. This work was funded
by NSERC, QuantumWorks, and CIFAR.
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FIG. 5 (color). The results for the approximation of the Jones
polynomial for knots whose braid representations have 4 strands
and 3 crossings. There are six unique knots of this kind and their
theoretical values of the Jones polynomial are plotted for the six
experiments. The corresponding experimental data points of
three braid representations for each experiment are plotted along
with error ellipses demonstrating the statistical error (with 86.5%
confidence levels or 2�). The distribution is generated by
simulating each experiment 200 times with single pulse fidelities
of 0.99 which is the implemented pulse fidelity. Using the error
ellipses as discriminators, these results yields a 91% success rate
for distinguishing distinct knots.

PRL 103, 250501 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

18 DECEMBER 2009

250501-4


