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Computing circuits composed of noisy logical gates and their ability to represent arbitrary Boolean

functions with a given level of error are investigated within a statistical mechanics setting. Existing

bounds on their performance are straightforwardly retrieved, generalized, and identified as the corre-

sponding typical-case phase transitions. Results on error rates, function depth, and sensitivity, and their

dependence on the gate-type and noise model used are also obtained.
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Noise is inherent in most forms of computing and its
impact is more dramatic as the computing circuits become
more complex and of large scale [1]. Classical computing
circuits based on electromagnetic components suffer from
thermal noise and production errors, quantum computers
suffer from decoherence, and noisy processes, inherent in
biological systems, remain poorly understood.

The first model of noisy computation was proposed by
von Neumann [2] who used Boolean circuits composed of
�-noisy gates to gain insight into the robustness of biologi-
cal neuronal networks. A circuit in this context is a directed
acyclic graph in which nodes of in-degree zero are either
Boolean constants or references to arguments, nodes of in-
degree k � 1 are logical gates of k arguments and nodes of
out-degree zero represent circuit outputs. A formula is a
single-output circuit in which the output of each gate is
input to at most one gate. An �-noisy gate computes a
Boolean function �: f�1; 1gk ! f�1; 1g, but for each in-
put S 2 f�1; 1gk there is an error probability �, considered
here to be independent for each gate, such that �ðSÞ !
��ðSÞ. A circuit composed of noisy gates with � > 0
represents a given deterministic function with reliability
�—the maximum error probability over all possible circuit
inputs. von Neumann showed that reliable computation,
with � < 1=2, is possible [2] for small � values and specific
gates, and demonstrated how reliability can be improved
using �-noisy gates only.

In a more recent analysis Pippenger [3] demonstrated
that formulas only compute reliably up to a certain gate
error threshold and that reliable computation with noisy
elements requires strictly greater depth. These bounds
based on worst-case scenarios have subsequently been
refined [4–6], and developed to include circuits [4]. Most
existing results are restricted to specific gates and the
restitution of gate properties employs specific construc-
tions. Here we propose a more general typical-case analy-
sis that accommodates general gates or gate distribution.

Random Boolean functions play an important role in
information theory as they allow for the exploration of
average case properties [7], in contrast to the traditionally

studied worst-case scenario. The generation of typical
functions, sampled uniformly over the space of Boolean
functions, is a research area in its own right; most conven-
tional methods focus on the ability to construct arbitrary
functions using basic gates or procedures but typically
result in highly uncharacteristic functions when generated
at random [8–10]. To generate typical functions we use a
growth process where one defines an initial distribution
over a set of simple Boolean gates; these are then com-
bined repeatedly by Boolean connectives to define new
formulas. One such process [11] was shown to result in
typical Boolean functions even when a single-type gate is
used [11]. As the resulting number of gates increases
exponentially with the formula depth, we will use a layered
variant of the original framework.
In this Letter we show how models of random formulas

can be mapped onto a physical framework and employ
methods of statistical physics, developed specifically to
analyze the typical behavior of random disordered systems,
to gain insight into the behavior of noisy Boolean random
formulas. The stability of the circuit towards input-layer
perturbations and its dependence on the input magnetiza-
tion are studied to establish the main characteristics of the
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FIG. 1 (color online). The model of two coupled systems with
identical topology and different inverse temperatures � and �̂ !
1. Gates are indicated by squares, SI and input nodes by circles.
Blue (dark gray) indicates noiseless gates, red (gray) indicates
noisy gates.
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generated formulas. To investigate the properties of noisy
circuits we consider two copies of the same topology with
different temperatures (1=�), representing the noisy (�<

1) and noiseless (�̂ ! 1) versions of the same circuit.
The generating-functional methodology used here comple-
ments the cavity and variational approaches [12] that have
been successfully applied to similar tasks, such as the
reconstruction problem [13]. Because of the directed na-
ture of the interactions, the generating-functional formula-
tion is arguably more suitable here and in problems of
similar characteristics. We show that the typical-case mac-
roscopic behavior observed corresponds straightforwardly
to the bounds obtained for specific cases [2–6]. Being very
general, the framework is extended to consider further
properties of random Boolean formulas for different gates
and their dependence on noise level and formula depth.

The noisy computation model considered here, shown in
Fig. 1, is a feed-forward layered N � ðLþ 1Þ Boolean
circuit. The layers in the circuit are numbered from 0
(input) to L (output). Each layer ‘ 2 f1; . . . ; Lg in the
circuit is composed of exactly N �-noisy, k-ary Boolean
gates. Because of gate noise, the ith gate in the ‘th layer
operates in a stochastic manner according to the micro-
scopic law

PðS‘i jS‘�1
i1

; . . . ; S‘�1
ik

Þ ¼ e
�S‘i �ðS‘�1

i1
;...;S‘�1

ik
Þ

2 cosh½��ðS‘�1
i1

; . . . ; S‘�1
ik

Þ� ;

(1)

where � relates to the gate noise � via tanh� ¼ 1� 2�.
The gate-output S‘i is completely random/deterministic
when � ! 0=1, respectively. The model is acyclic by
definition so that given the state of the layer ‘ the gates
of layer ‘þ 1 operate independently of each other. This
suggests that the probability of the microscopic state
S0; . . . ;SL, where S‘ 2 f�1; 1gN , is a product of (1) over
circuit sites and layers. The joint probability of micro-
scopic states in two systems of identical topology but
different gate noise is

P½fS‘g; fŜ‘g� ¼ PðS0; Ŝ0jSIÞY
L

‘¼1

PðS‘jS‘�1ÞPðŜ‘jŜ‘�1Þ;

(2)

where PðS‘jS‘�1Þ ¼ QN
i¼1 PðS‘i jS‘�1

i1
; . . . ; S‘�1

ik
Þ. The con-

ditional probability PðŜ‘jŜ‘�1Þ is similar to PðS‘jS‘�1Þ
but with � ! �̂. The source of disorder in our model are
the random connections and boundary conditions. Random
connections are generated by selecting the ith gate at layer
‘ and sampling exactly k (unordered) indices, fi1; . . . ; ikg,
uniformly from the set of all possible indices, which point
to outputs of layer ‘� 1. This is carried out repeatedly and
independently for all gates and layers except the input layer
(l ¼ 0). To cater for a possible higher level of correlation,
the 0-layer boundary conditions are generated by selecting

randomly members of the finite set SI ¼ fSI1; . . . ; SIjSI jg; the
indices ni are sampled uniformly with PðniÞ ¼ 1=jSIj and
assigned to the input layer. This leads to the random

boundary conditions PðS0; Ŝ0jSIÞ ¼ Q
N
i¼1 �S0i ;S

I
ni
�Ŝ0i ;S

0
i
.

The structure of the probability distribution (2) is similar
to the evolution of disordered Ising spin systems [14] if
layers are regarded as discrete time steps of parallel dy-
namics. The generating-functional method [15] provides

�½c ; ĉ � ¼
�
e
�i
P
‘;i

fc ‘
i S

‘
iþĉ ‘

i Ŝ
‘
i g�

; (3)

where h. . .i denotes the average generated by (2). The
generating functional (3), regarded also as a characteristic
function, is used to compute moments of (2) by taking
partial derivatives with respect to the generating fields

fc ‘
i ; ĉ

‘0
j g, e.g., hS‘i Ŝ‘

0
j i ¼ �limc ;ĉ!0

@2

@
c ‘
i
@
ĉ ‘0
j

�½c ; ĉ �. We

assume that the system becomes self-averaging forN ! 1
[15] and compute �½c ; ĉ �, where � � � is the disorder
average; this gives rise to the macroscopic observables

mð‘Þ ¼ 1

N

XN
i¼1

hS‘i i; Cð‘Þ ¼ 1

N

XN
i¼1

hS‘i Ŝ‘i i; (4)

the average layer activity (magnetization) mð‘Þ on layer ‘
and overlap Cð‘Þ between the two systems. Averaging (3)
over the disorder [16] leads to the saddle-point integral

�½. . .� ¼ RfdPdP̂geN�½P;P̂� where � is

� ¼ i
X
‘

X
S;Ŝ

P̂‘ðS; ŜÞP‘ðS; ŜÞ

þX
n

PðnÞ log X
fS‘;Ŝ‘g

Mn½fS‘; Ŝ‘g� (5)

and Mn is an effective single-site measure

Mn½fS‘; Ŝ‘g� ¼ �S0;SIn
�Ŝ0;S0

YL�1

‘¼0

� X
fSj;Ŝjg

Yk
j¼1

½P‘ðSj; ŜjÞ�

� e�iP̂‘ðS‘;Ŝ‘Þ e�S
‘þ1�ðS1;...;SkÞ

2 cosh½��ðS1; . . . ; SkÞ�

� e�̂Ŝ
‘þ1�ðŜ1;...;ŜkÞ

2 cosh½�̂�ðŜ1; . . . ; ŜkÞ�
�
: (6)

For N ! 1 the averaged generating functional is domi-
nated by the extremum of �. Functional variation with

respect to the order parameter P̂‘ðS‘; Ŝ‘Þ provides the

saddle-point equation P‘ðS; ŜÞ ¼ P
nPðnÞh�S‘;S�Ŝ‘;ŜiMn

,

where h� � �iMn
is the average with respect to (6). The

physical meaning of P‘ðS; ŜÞ relates to the averaged joint

probability of nodes in the two systems P‘ðS; ŜÞ ¼
limN!1 1

N

PN
i¼1 h�S‘i ;S

�Ŝ‘i ;Ŝ
ijSI , while the conjugate order

parameter, which ensures normalization of P‘ðS; ŜÞ, van-
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ishes. This simplifies the effective measure (6), yielding
the macroscopic observables

mð‘þ1Þ¼X
fSjg

Yk
j¼1

�
1

2
f1þSjmð‘Þg

�
tanh½��ðS1; . . . ;SkÞ�

Cð‘þ1Þ¼ X
fSj;Ŝjg

Yk
j¼1

�
1

2
f1þSjmð‘Þþ Ŝjm̂ð‘ÞþSjŜjCð‘Þg

�

� tanh½��ðS1; . . . ;SkÞ�tanh½�̂�ðŜ1; . . . ; ŜkÞ�:
(7)

The magnetization m̂ð‘Þ is computed by (7) using �̂; initial
conditions are mð0Þ ¼ m̂ð0Þ ¼ 1

jSI j
P

S2SIS, Cð0Þ ¼ 1.

The connectivity profile considered here results in a
simple set of equations. The macroscopic behavior of the
two systems is completely determined by the set of ob-
servables fmð‘Þ; m̂ð‘Þ; Cð‘Þg through the order parameter

P‘ðS; ŜÞ ¼ 1
2 ð1þ Smð‘Þ þ Ŝ m̂ð‘Þ þ SŜCð‘ÞÞ, while the

single system behavior is dominated by fmð‘Þg.
Furthermore, since hQjS

‘
ij
i ! Q

jhS‘iji for finite j, the spins
in layer ‘ are uncorrelated when N ! 1; this is due to the
fact that the ith site is a root of a full k-ary tree, which
grows from the input layer and points to Boolean variables
in the set SI. Loops in the circuit are rare, so that trees can
be regarded as random independent Boolean formulas for a
given input. The output of a typical formula at layer ‘ is
determined by P‘ðSÞ.

The order parameter Cð‘Þ and the normalized Hamming

distance Dð‘Þ between states S‘ and Ŝ‘ are related via the
identity Dð‘Þ ¼ 1

2 ð1� Cð‘ÞÞ. This gives rise to the mea-

sure �ð‘Þ ¼ lim�;�̂!1Dð‘Þ, for the circuit’s sensitivity

with respect to its input. The probability PðS‘i � Ŝ‘iÞ for
any node, which relates to the Hamming distance Dð‘Þ,
facilitates the estimate of the noisy circuit’s ‘-layer error
probability �ð‘Þ ¼ maxSI lim�̂!1 Dð‘Þ, comparing the

noisy and noiseless node values for all inputs. Obviously,
in the absence of noise �ð‘Þ ¼ 0, 8 ‘.

To obtain results for a specific case, which could be
compared against those obtained in the information theory
literature, we apply Eqs. (7) for a particular Boolean gate
�, the k-input majority gate (MAJ-k). The reasons for
choosing this gate are twofold. First, it was proved [5,6]
to be optimal for noisy computation in formulas. Second,
formulas constructed at random using majority gates can in
principle compute any Boolean function [11] with uniform
probability. A convenient representation of the MAJ-k gate
is of the formMAJðS1; . . . ; SkÞ ¼ sgn½Pk

j¼1 Sj�with odd k.
For the particularly simple example MAJ-3 one obtains for

�̂ ! 1

mð‘þ 1Þ ¼ 1
2 tanh�½3mð‘Þ �m3ð‘Þ�; (8)

Cð‘þ 1Þ ¼ tanh�½32mð‘Þm̂ð‘Þ � 3
4Cð‘Þm2ð‘Þ

� 3
4Cð‘Þm̂2ð‘Þ þ 3

4Cð‘Þ þ 1
4C

3ð‘Þ�: (9)

Insight on the functions implemented and the gate noise
threshold can be obtained from Eq. (8), which describes the
evolution of the magnetization from layer to layer. When
expanded around the stationary solutionmð1Þ ¼ 0 it iden-
tifies the critical noise value �� ¼ 1=6, identical to the
results of [2,5], below which the (unordered) mð1Þ ¼ 0
solution becomes unstable and two stable (ordered) solu-

tionsmð1Þ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 6�Þ=ð1� 2�Þp
emerge. Studying the

joint dynamics of (8) and (9) shows that for � > 1=6 the
magnetization vanishes (exponentially) while for � < 1=6
the stationary solutions appear, corresponding to the posi-
tive and negative initial magnetizations mð0Þ, respectively.
The boundary separating these phases, shown in Fig. 2(a),
identifies the noise level below which the circuit can
preserve 1 bit of input information SI ¼ fSg for arbitrarily
many layers; the error probability P‘ð�SÞ ¼ 1

2 ð1� Smð‘ÞÞ
measures how well it is preserved after ‘ layers. Less
complicated functions (fewer layers) can be computed
with higher gate noise.
The analysis can easily accommodate other gates, in

particular, MAJ-k. Using similar arguments one identifies
the critical noise level �� ¼ 1=2� 2k�2=ð k�1

ðk�1Þ=2Þ below

which two stable solutions emerge. Computing formulas
with limited error � above the critical noise level ��,
identical to the threshold reported in [6], becomes infea-
sible. Similarly, the transition point for formulas con-
structed of NAND gates identifies a threshold noise level

�� ¼ ð3� ffiffiffi
7

p Þ=4, identical to the one derived in [17].
General properties of average formulas can be straight-

forwardly obtained from the site probability of average
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FIG. 2 (color online). Properties of MAJ-3 gate-based formu-
las: (a) Magnetization m and output error � as a function of gate
noise �. (b) Sensitivity of �ð‘Þ to input mismatch �ð0Þ for
mð0Þ ¼ 0. (c) Phase diagram for gate noise � at layer L. For
the MAJ-7 function, we plot the evolution, in layers (l), of
(d) magnetization m and (e) output error �.
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formulas P‘ðSÞ at layer ‘. Stationary solutions in the noise-
less case show mð1Þ ¼ �1, in correspondence to the sign
of the initial magnetization, giving rise to biased function
outputs. For mð0Þ ¼ 0 one obtains mð1Þ ¼ 0, so that each
site of the model can be associated with some random
Boolean function output, evaluating to �1 with equal
probability. Consequently, depending on the initial
conditions, formulas converge to a single Boolean func-
tion or to the uniform distribution over some set of func-
tions [7]. Our result is consistent with majority gate
growth process [7,11] where for input SI ¼
f�1; 1; SI1; . . . ; S

I
n;�SI1; . . . ;�SIng stationary state formulas

compute all Boolean functions of n variables while for
SI ¼ f�1; 1; SI1; . . . ; S

I
ng (also without �1, 1) they con-

verge to the MAJ-n function (odd n) or to the uniform
distribution over slice functions (even n) [7]. Convergence
to the stationary solution mð1Þ is at depth OðlognÞ for
mð0Þ ¼ 1=n where n 2 N in agreement with [7].

Function error rates can be calculated through the study
of Eq. (9) describing the evolution of the overlap between
the two systems. Initial conditions are the same for both
systems mð0Þ ¼ m̂ð0Þ and Cð0Þ ¼ 1. The magnetization in

the noisy system (� � 1=6) converges to mð1Þ ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1� 6�Þ=ð1� 2�Þp

, depending on the sign of mð0Þ.
Using these stationary values and Eq. (9) we find Cð1Þ �
ð7 � 18�Þ � ð1 � 2�ÞC3ð1Þ ¼ �6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið1 � 2�Þð1 � 6�Þp
leading to the error probability �ð1Þ plotted in Fig. 2(a).

The stationary solution Cð1Þ ¼ 1 of Eq. (9) for initial
conditions mð0Þ ¼ 0, Cð0Þ ¼ 1, and � ¼ 0 is unstable
under perturbations to Cð0Þ, resulting in the stable sta-
tionary state Cð1Þ ¼ 0. Consequently, the circuit is
input sensitive leading to an increasing Hamming distance
�ð‘Þ for small perturbations �ð0Þ as shown in Fig. 2(b).
For � > 0 the circuit amplifies the noise and �ðLÞ grows
but remains limited for sufficiently small � as shown in
Fig. 2(c).

To examine the computation performed at layer ‘ we
consider the input set SI ¼ fS1; . . . ; S7g, corresponding to
the function MAJ-7 for the noiseless case, with lowest
possible initial magnetization mð0Þ ¼ 1=7 where changes
between layers are smallest. Figure 2(d) shows the mag-
netization mð‘Þ for different gate noise levels; the
convergence rate decreases with increasing �. Close to
the critical value the difference equation (8) can be ap-
proximated by the differential equation d

d‘mð‘Þ ¼
�mð‘Þ þ 1

2 ð1� 2�Þ½3mð‘Þ �m3ð‘Þ� for continuous ‘. Its
solution close to the phase boundary, obtained by expand-
ing � ¼ 1=6þ �� where j��j 	 1, exhibits exponential
convergence jmð‘Þ �mð1Þj 
 e�const��‘.

The function error �ð‘Þ, shown in Fig. 2(e) for different
� values, exhibits two distinct stages in the dynamics.
Initially, the error increases until it reaches its maximum
value at ‘ ¼ 5, before the MAJ-7 function is computed
exactly at ‘ ¼ 8 for � ¼ 0 [see Fig. 2(d)]; the location of
this maximum is independent of �. This suggests that

gate inputs at layers ‘ � 5 are nonuniform, contributing
to noise amplification, but become more uniform later
leading to noise suppression and decreasing error. As we
approach �� the number of layers needed for the error to
reach stationarity increases; in the region � ¼ 1=6��� it
can be estimated from the asymptotic form derived for
mð‘Þ. The dynamic behavior of the error changes to mono-

tonically increasing at �0 ¼ 1
2 ½1�m2ð0Þ

3�m2ð0Þ� above which noise

cannot be reduced by additional layers. For � � 1=6 the
error evolution becomes strictly monotonic it relaxes to its
stationary value 1=2 exponentially fast.
By mapping the problem of noisy computation onto a

physical framework, we retrieved many of the existing
bounds and extended them to include arbitrary gates and/
or distribution of gates. In addition, we calculated the level
of error and function bias expected at any depth, the
sensitivity to input perturbations and expected convergence
rate depending on the input bias, gate properties, and gate
noise level. This framework enables one to discover typical
properties of noisy computation that are inaccessible via
traditional methods of information theory and will un-
doubtedly contribute to exciting new discoveries; for in-
stance, in biologically inspired systems and circuits with
hard (systematic) noise.
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[12] M. Mézard and A. Montanari, Information, Physics, and

Computation (Oxford University Press, Oxford, 2009).
[13] M. Mezard and A. Montanari, J. Stat. Phys. 124, 1317

(2006).
[14] J. P. L. Hatchett et al., J. Phys. A 37, 6201 (2004).
[15] C. De Dominicis, Phys. Rev. B 18, 4913 (1978).
[16] A. Mozeika et al. (to be published).
[17] W. Evans and N. Pippenger, IEEE Trans. Inf. Theory 44,

1299 (1998).

PRL 103, 248701 (2009) P HY S I CA L R EV I EW LE T T E R S
week ending

11 DECEMBER 2009

248701-4


