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Using simulations of hard rods in smectic-A states, we find stringlike clusters of up to 10 interlayer rods
exhibiting dynamic cooperativity. We also find non-Gaussian diffusion and heterogeneous dynamics due
to the equilibrium periodic smectic density profiles, which give rise to permanent barriers for layer-to-
layer diffusion. This relaxation behavior is surprisingly similar to that of nonequilibrium supercooled
liquids, although there the particles are trapped in transient (instead of permanent) cages.
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Smectic liquid crystals (LCs) consist of stacks of fluid-
like layers of oriented rodlike particles [1]. They can be
stabilized by attractive Van der Waals forces [1] or by
repulsive hard-core interactions between sufficiently elon-
gated particles [2]. In the smectic-A phase, the static struc-
ture is characterized by long-range orientational ordering
of the rods combined with a one-dimensional periodic
density variation in the direction parallel to the rods.
While the equilibrium properties of smectic phases are
relatively well understood [1], little is known about their
dynamics on the particle scale, even though Helfrich’s
early report of diffusion (‘“‘permeation’) of anisotropic
particles through smectic layers goes back 40 years [3].
Recently, however, exciting progress was made based on
newly developed experimental techniques (e.g., NMR
coupled to strong magnetic field gradients [4], or fluores-
cent labelling of rods [5]), which revealed direct observa-
tions of non-Gaussian diffusion and quasiquantized layer-
to-layer hopping across a barrier [5]. This triggered new
theoretical work, based on dynamic density functional
theory (DDFT), which not only confirmed the non-
Gaussian diffusive motion and the one-dimensional ‘“‘per-
manent”’ barriers due to the static smectic background, but
also showed the importance of “temporary” cages formed
by neighboring rods [6].

Non-Gaussian diffusive behavior due to heterogeneous
dynamics of “slow” and ‘‘fast” particles is also a key
feature in glassy systems and supercooled liquids, in which
individual particles are trapped in transient cages formed
by their neighbors. This heterogeneous dynamics is found
to be closely related to cage rearrangements and to coop-
erative motion, in which a small fraction of the particles
(typically a few percent) move collectively in stringlike
[7,8] or compact [9,10] clusters. The intriguing question
that we address in this Letter is to what extent the dynamics
in the smectic-A phase is collective, or, in other words, to
what extent is the equilibrium smectic-A dynamics resem-
blant to that of out-of-equilibrium quenched supercooled
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liquids? This issue cannot be addressed directly in fluores-
cence experiments, in which only a small fraction of the
rods is labeled such that moving clusters cannot be ob-
served. DDFT yields average quantities such as density
profiles, Van Hove functions, and single-particle barriers,
but does not provide cluster information [6]. We therefore
resort to computer simulations of hard-rod fluids in the
smectic phase. The key observation of this Letter is that we
find clear evidence for cooperative permeation of stringlike
clusters containing up to 10 fast-moving rods in an equi-
librium smectic LC phase.

Our system contains N = 1530-3000 freely rotating
hard spherocylinders with aspect ratio L* = L/D =5,
where D is the diameter and L + D the rod length. For
L* =5, the smectic phase melts into a nematic phase
below P* = 1.4 and freezes into a crystal above P* =
2.3, where P* = PD? /kpT is the reduced pressure with
kg Boltzmann’s constant [11]. We study the bulk smectic
phase at P} = 1.6 and P; = 2.0, corresponding to packing
fractions 1y = 0.508 and n, = 0.557, respectively. We
performed MC simulations in a rectangular box with
5-10 smectic layers and periodic boundaries. First, we
equilibrated the systems at constant N, P, and T. Then,
we performed production runs at constant volume to ana-
lyze the relaxation dynamics. Standard MC simulations
with small displacements are used to mimic Brownian
motion. This was shown to be efficient to study the slow
relaxation of glasses at low temperatures [12] or at high
concentrations [13]. The anisotropy of the self-diffusion of
the rods (a factor of 2 [14]) is taken into account by a larger
maximum displacement parallel to the long axis compared
to that along the short axes. Translational and rotational
moves were selected randomly, with the same probability
to attempt each of them separately or together. The accep-
tance rates of both moves were = 50%. As unit of time, we
chose 7 = D?/D,., where D,, is the isotropic average of the
translational diffusion coefficients in the three space di-
mensions at short time. We checked that our results (mea-
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sured in units of 7) are independent of the maximum
displacements.

Denoting the positions of the rods by r; = (x;, y;, z;), we
first measure the (relative) probability 7(z) of finding a rod
at position z, where the z axis is parallel to the nematic
director 7. Following Ref. [5], we introduce the Boltzmann
factor m(z) « exp[—U(z)/kgT] with U(z) the effective
potential for diffusion out of the middle of a smectic layer.
The layer spacings in the two states, & = (L + D) X
(1.05, 1.03), follow from fits to the periodicity, and the
potential barriers are found to be U, = (3.5, 7.5)kgT.
Thus, the denser state reveals a slightly smaller layer
spacing but a substantially higher diffusion barrier and
hence a much stronger confinement to the middle of the
smectic layers. Note that the small size of our system and
the periodic boundary conditions prevent the formation of
screw disclinations, which could have allowed for barrier-
free nematiclike ““fast tracks™ through the layers [15].

We thus expect heterogeneous dynamics due to the rods
rattling around in a given layer until they overcome the
barrier and jump to a neighboring layer. To quantify the
picture of a rattling and hopping-type z diffusion, we
calculate the self part of the Van Hove correlation function
(VHF)  G,(z, 1) = (X, 8{z — [z:(tg + 1) — zi(19) ]},
with (. ..) the ensemble average over all particles and initial
time ¢, and & the Dirac-delta. Note that G,(z, t) gives the
distribution for the particle z displacements during a time
interval ¢, and would be a Gaussian of z for freely diffusive
particles. Figures 1(a) and 1(b) show the VHF for our two
state points as a function of z for several equidistant s,
showing the appearance of peaks at integer layer spacings
consistent with earlier experimental [5] and theoretical [6]
results. The height and spatial extension of the peaks is
larger at 7, indicative of a faster layer-to-layer diffu-
sion than at 7n,. The VHF’s can be analyzed in terms
of the non-Gaussian parameter (NGP) [16], for z diffu-
sion defined by a,(f) = —1 + (Az(t)*)/3(Az(1)*)* with
Az(r) = z(ty + t) — z(ty) the z displacement of a rod in
the time interval ¢ starting at f. Likewise, non-Gaussian in-
plane diffusion can be characterized by an NGP a,, (7).
Heterogeneous dynamics occurs on a time-scale 7 if «_(¢)
or a,,(?) is nonvanishing. In Figs. 1(c) and 1(d), we show
the NGP’s for our two state points, with «_(f) showing a
clear peak at r* = (2, 10)7 with «_(*) increasing with
density, while a,,(7) is hardly visible on the scale of the
figure and thus essentially vanishes for all 7. We also plot
the mean-square displacements (MSDs) (Az(7)) and
(Ax?(1) + Ay*(z)) in Figs. 1(e) and 1(f) for the two state
points. The xy-MSD shows a smooth crossover from short-
to long-time diffusion, while the z-MSD develops an in-
termediate cage-trapping plateau up to ¢* beyond which
interlayer diffusion takes place. Note that the z-MSD ex-
ceeds the xy-MSD only at short times due to anisotropy of
the short-time diffusion coefficients [14].

In addition, we study structural relaxation by computing
the self-intermediate scattering function F,(r) = {(exp[iq
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FIG. 1. (a), (b) Self part of the Van Hove function G,(z, 1); (c),
(d) non-Gaussian parameter a,(t) and «a,,(t); (e), (f) mean-
square displacement (MSD) in units of D?; and (g), (h) F,(f)
and its Gaussian approximation (crosses, see text), at packing
fraction n; = 0.508 (left column) and 7, = 0.557 (right col-
umn). The time intervals in (a), (b) range from ¢ = 0.47 (dotted
lines) to t = 407 (solid lines), with increments of = 87. The solid
and open symbols refer to the z and xy direction, respectively.

Ar(7)]) at wave vectors q¢D = (0,0, ¢,) and (q,, q,, 0),
with ¢, = 1 and (¢ + ¢2)"/2 = 6, that correspond to the
main peaks in the static structure factor. Here Ar(z) denotes
the particle displacement during a time interval 7. Results
are shown in Figs. 1(g) and 1(h). The in-layer dynamics is
very fast with slightly stretched exponential decay, typical
of dense fluidlike behavior [17]. By contrast, the interlayer
dynamics is much slower, with F(r) decaying in two steps
at ' and " separated by a plateau during ¢ <t <¢". For
comparison, we also plot the Gaussian approximation
FS(t) = exp[—q2(Az?(1))], which lacks a clear plateau.
We conclude that the plateau coincides with the nonvan-
ishing of «_(¢), and can hence be attributed to the hetero-
geneity of the dynamics [7]. The first step at 7//7 <1
corresponds to the rattling of rods inside the temporary
cage and permanent smectic background formed by neigh-
boring rods [6], whereas the second one (« relaxation)
corresponds to the escape on a time scale that increases
from /7 = 100 at 1, to 103 at 7,. The increase of ¢ and
that of the height of the plateau of F () with density is also
observed for colloidal glasses [17]. At 7, the longtime
decay of F,(r) is well fitted by a stretched exponential of
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the form exp[—(#/t,)?], with relaxation time ¢,/7 = 650
and B8 = 0.6, once more confirming the heterogeneous
nature of the relaxation dynamics [17]; ¢, at 1, is beyond
our simulation time.

Non-Gaussian dynamics due to rattling-and-jumping
processes are not surprising, and have in fact been ob-
served in, e.g., 2D liquids [18], cluster crystals [19], and
glasses [20]. Several models based on a heterogeneous
distribution of diffusion coefficients, jump times, or jump
lengths have been introduced to explain the heterogeneous
dynamics due to temporary cages [20], while another
model explains the non-Gaussian diffusion by the dynam-
ics of a single Brownian particle in a periodic external
potential, which is very similar to the permanent barriers of
the smectic-A phase [21]. The new feature that we identify
below concerns the cooperative motion of strings of fast-
moving particles. This spatial structure and cooperativity
cannot be captured by the essentially one-particle analyses
of Refs. [21,22], has not been observed in Refs. [18,19],
but yields an intriguing analogy with glassy dynamics. It is
also tempting to speculate that the cooperative motion of
strings of different sizes might be responsible for a distri-
bution of decay rates, and hence for the stretched-
exponential decay of F().

To this end, we first identify the fast-moving particles.
Comparing the VHF at ¢* of Figs. 1(a) and 1(b) with a
Gaussian approximation with the same MSD reveals that
the fast-moving particles have travelled over more than
h/2 during a time interval #*. Therefore, they are intimately
related to interlayer particles, which reside more than some
distance & from the nearest smectic plane. In order to
define & sensibly, we consider the variance of one period

of 7(z) as o? = j’i/hz/z

(0.6,0.3) for m; and m,, respectively. We now set § =
ko with k = 1, 2, 3. The fraction f;, of so-called interlayer
particles is then f; = (0.28, 0.45), f, = (0.05,0.13), and
f3 = (0.02,0.03) for our two state points, showing, per-
haps surprisingly, that the denser state contains more in-
terlayer particles caused by the smaller o. We also
calculated the pair distribution of the interlayer particles
(not shown), revealing a higher contact value than that of
the bulk smectic phase, suggesting substantial clustering of
interlayer particles despite their low concentration f;7.
Stringlike clusters composed of n = 1, - - -, 10 interlayer
rods can indeed be identified, as shown for 6 = 20 by the
size distribution P(n) in Fig. 2. Our (rather stringent)
cluster criterion is such that two interlayer particles belong
to the same cluster if the z and xy distances are smaller than
h and D, respectively. At 5, one deduces from P(n) that
~95% of the clusters consists mostly of 2 or 3 rods, while
clusters of more than 5 rods are rare but do exist. The
denser smectic phase has larger clusters, which is again
similar to supercooled liquids and glassy systems, in which
the cluster size increases with increasing cage trapping
[8,10]. The fit P(n) = exp(—an) is accurate with a =
(1.5,0.7) at ;; and 7,, respectively, from which the aver-
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FIG. 2 (color online). Probability distribution P(n) of the
number n of interlayer rods in a stringlike cluster (with 6 =
20, see text), at n; (@) and 717, (O). The inset shows P(n) at 7,
for 6§ = o (), 20 (O), and 30 (<). The solid lines denote the
fit P(n) « exp(—an) with a given in the figure. The snapshot of
3000 rods at 7; shows predominantly inlayer rods and single
interlayer rods (black), both with diameters reduced to D/4 for
clarity. The thicker rods denote transverse ones as well as
stringlike clusters of 2 (light shaded) up to 7 (dark shaded) rods.

age cluster size follows as (n) = [1 — exp(—a)]~'. These
results, however, depend strongly on 6 as revealed by the
inset of Fig. 2.

With all these resemblances to glassy dynamics, we now
study the dynamics of the layer-to-layer diffusion, for
which Fig. 3(b) shows some typical trajectories. Most of
the rods “jump”” fast compared to the dwelling time within
a smectic layer. Some rods diffuse to the interlayer spacing
and return to their original layer; others move from one
layer to another several times; in some cases, the dwelling
time in the interlayer spacing is quite long, while double
jumps can be also observed. These observations suggest a
rather broad distribution of jump times #; to diffuse from
one layer to the next, where ¢, is defined as the time span
between first and last “‘contact’ with the new and old layer,
respectively, with contact established if the rod is at a

0.04 0.2 1

FIG. 3 (color online). (a) Distribution II(z;) of layer-to-layer
jump times ¢;, based on 6 = 20 at density 7. (b) Trajectories of
jumping rods projected onto the xz plane, with the dashed lines
representing the middle of the smectic layers.
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distance 6 from the middle of a smectic layer. At n; and
for 8§ = 20, the distribution of jump times I1(z;) as ob-
tained by averaging over many trajectories is plotted in
Fig. 3(a), and shows that the most probable jump time is
0.147, the median is at #; = 0.27, while the distribution
extends over two decades 0.01 < ¢,/7 < 1. Having devel-
oped a sense of time, we can characterize the trajectories
further. We distinguish single and multiple jumps, depend-
ing on the dwelling time in the next layer being longer or
shorter, respectively, than ¢ before another jump is started.
At m, we find that =5% of the total number of jumps is
multiple, of which =83% is a double and the remaining
fraction a triple jump. At 7,, where #; = 0.277, the frac-
tion of multiple jumps is 0.6%. The interlayer rods are
generally oriented along 71. Remarkably, however, at 7,
also transversely oriented rods in between two smectic
layers have occasionally been observed [23,24], which
diffuse either to a new layer or return to the original one
by rotating parallel or antiparallel to their original
orientation.

With our clear evidence for heterogeneous dynamics and
spatial correlations between the fast-moving interlayer
particles, it seems natural to investigate dynamic coopera-
tivity, i.e., whether or not the stringlike clusters observed in
static configurations actually move collectively. This re-
quires a cluster criterion that not only involves spatial but
also temporal proximity to identify collectively moving
rods. Two jumping rods i and j are considered to move
cooperatively if their arrival times 1) and #/) in their new
layers (i.e., the first time at which their distance to the
middle of the new layer equals 8) satisfies |/ — V)| < At,
while r;(1?) and r;(¢)) satisfy our static spatial cluster
criterion. Using 8 = 20 and At = 7 [i.e., long enough for
any jump to finish according to I1(z,)], we find at 5, that
the number of collective jumps is =25% of the total
number of jumps, and involves mainly 2 (=79%) or
3 (=17%), and very rarely =4 (<4%) rods. Interestingly,
~42% of the collective jumps involve rods diffusing in
opposite directions, suggesting that the vacated space of a
jumping rod is reoccupied by a rod from the two neighbor-
ing layers with almost equal probability. These character-
istic values are insensitive to small modifications of our
spatial cluster criterion, while a smaller temporal interval
of At = t} (the median jump time) reduces the fraction of
collective jumps to =9%. In other words, the motion is
indeed strongly cooperative at 7. If the analogy with
glassy systems would hold even further, one would expect
more cooperativity at 1,. Surprisingly, perhaps, despite the
larger static clusters, we find /ess collective motion at 7),.
For instance, with 6 = 20~ and Ar = 1.27 (maximal jump
time), only =4% of the jumps can now be regarded as
collective (involving essentially only 2 rods). We attribute
this reduction of cooperativity upon approaching crystal-
lization to the higher permanent barriers that reduce the
probability of static clusters to actually complete their

attempted jumps. Such permanent barriers do not exist in
undercooled liguids (where the dynamic cluster size grows
upon approaching the glass transition [8,10]), whereas they
do exist in crystals, where structural relaxation is virtually
nonexistent.

In conclusion, for equilibrium hard rods in the smectic
phase, we find non-Gaussian dynamics due to the periodic
smectic structure and cooperative motion of stringlike
clusters surprisingly similar to that of nonequilibrium
supercooled liquids. Our results might be relevant for
dynamics in other inhomogeneous liquids, e.g., confined
fluids (micro and nanofluidic devices) [25], columnar LCs,
and cellular processes such as cell death and signaling in
lipid membranes [26].
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