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Recent studies reveal that suspensions of neutrally buoyant non-Brownian particles driven by slow

periodic shear can undergo a dynamical phase transition between a fluctuating irreversible steady state and

an absorbing reversible state. Using a computer model, we show that such systems exhibit self-organized

criticality when a finite particle sedimentation velocity vs is introduced. Under periodic shear, these

systems evolve, without external intervention, towards the shear-dependent critical concentration �c as vs

is reduced. This state is characterized by power-law distributions in the lifetime and size of fluctuating

clusters. Experiments exhibit similar behavior and, as vs is reduced, yield steady-state values of � that

tend towards the �c corresponding to the applied shear.
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A system is said to exhibit self-organized criticality
(SOC) if it approaches a critical state with diverging time
and length scales, under some small external but unad-
justed drive [1,2]. SOC was first introduced by Bak, Tang
and Wiesenfeld [3] as an explanation for the power-law
behavior observed in some natural processes such as 1=f
noise or avalanches in sandpiles. Since then, many theo-
retical and numerical models have been shown to exhibit
SOC [2,4] but few physical realizations have been identi-
fied [2,5–10]. An interesting path to SOC has been ex-
plained for systems exhibiting a nonequilibrium phase
transition between fluctuating ‘‘active’’ steady states and
nonfluctuating ‘‘absorbing’’ states from which the system
cannot escape [2]. In this Letter, we use such an absorbing-
state phase transition and show through simulations and
experiments that slowly sedimenting suspensions of parti-
cles subject to oscillatory shear represent a new class of
self-organized critical systems.

Our approach is motivated by recent studies showing
that suspensions of non-Brownian, neutrally buoyant par-
ticles can undergo a dynamical phase transition from
absorbing to active states when they are slowly sheared
back and forth [11,12]. For a given particle volume frac-
tion �, two regimes are obtained depending on the strain
amplitude �0 of the shear cycles. At low �0, the system
organizes into an absorbing state where most particles
return to their initial positions at the end of each cycle.
Above a critical amplitude �c

0ð�Þ, a finite fraction of the

particles fail to return to their initial positions. Instead,
they follow diffusivelike trajectories [13], resulting in an
irreversible and fluctuating steady state. This transition
from absorbing to active states exhibits key features
of dynamical critical phenomena, with the fraction of
diffusing particles as the order parameter and the
power-law divergence of the relaxation time as �0 !
�c
0ð�Þ.

In new experiments, we explore the behavior of this
same system in the presence of an external field, gravity,
that couples to the suspended particles (see Fig. 1). The
system is prepared with particles slightly denser than the
suspending liquid. In the absence of shear, the particles
sediment to form a dense random packing at the bottom of
the cell. When the system is sheared, particles interact and
diffuse upward until the shear-induced diffusion is bal-
anced by the downward sedimentation caused by gravity
in a process known as viscous resuspension [14].
Interestingly, we find in the current study that for oscil-

latory shear at an imposed strain amplitude �0, slowly
sedimenting suspensions reach steady states where the
volume fraction is very uniform. In the limit where sedi-
mentation vanishes, the volume fraction of the suspension
bed approaches the critical value �cð�0Þ delimiting active
from absorbing steady states as measured in neutrally
buoyant suspensions. To gain insight into the phenomenon,
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FIG. 1 (color online). (a) Setup for viscous resuspension under
oscillatory shear in a Couette geometry. For a strain amplitude
�0 ¼ R��=2g, the suspension bed rises to a height hð�0Þ.
(b) The picture shows particles located in the plane of a laser
sheet shined tangentially through the gap of a transparent
Couette cell. Horizontal stripes are artifacts caused by imperfect
matching of particle and fluid refractive indices.
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we consider a simple model based on shear-induced diffu-
sion that mimics the competition between diffusion and
sedimentation in the experimental system.

The model is based on a 2D model previously shown to
capture the critical behavior of neutrally buoyant suspen-
sions [12]. Here, we modify the model to account for
sedimentation. N point particles are randomly distributed
in a rectangular box of width L and height H. We define
the horizontal x axis as the shear flow direction and the
vertical y axis as the sedimentation direction as depicted
in Fig. 2(a). Boundary conditions are periodic along the
x direction. The bottom of the box at y ¼ 0 is a hard
impenetrable wall. An interaction distance d is introduced
to define collisions; it also sets the unit of length and is
used as an effective particle diameter.

When the system is sheared back and forth with a strain
amplitude �0, some particle pairs move closer than the
interaction distance d. For each of these encounters, the
colliding ‘‘active’’ particles are given a random displace-
ment from their initial positions to simulate the irreversi-
bility of their trajectories. The net displacement of a
particle after one cycle is zero if it does not encounter
any other particle during the cycle. The direction of the
random displacements is uniformly distributed in the plane
and the amplitude is uniformly distributed between 0 and a
maximum value � ¼ 0:5d for the following results.

Sedimentation is introduced in the model by displacing
all the particles downward by the same amount after each
shear cycle. This defines a sedimentation velocity vs in
units of d per cycle. The unit time is one cycle and the
shear rate is given by _� ¼ �0 per cycle.

Active particles are created in two ways: (i) an active
particle activates an inactive particle by approaching it to

within less than d; (ii) an inactive particle moves down-
ward due to sedimentation and collides another inactive
particle that is pressed against the bottom wall, thus creat-
ing two new active particles. Furthermore, active particles
can, through their random displacements, self-organize
into a reversible configuration and become inactive [12].
If the suspension is organized into a fully reversible state
with no active particles, activation can only occur through
mechanism (ii). One recognizes here a process analogous
to that of grain addition in sandpile models, which have
been used to describe SOC [3].
Simulations with 103 particles are run for 105 shear

cycles. After each cycle, we calculate the area fraction
profile along the sedimentation axis �ðyÞ � 1

L �R
L
0 nðx; yÞdx where nðx; yÞ is the number of particles

within a distance d=2 from position (x, y). The height of
the suspension bed h is taken to be the greatest y for which
�ðyÞ � 0. Because the number of particles stacked per unit
width � ¼ N=L is conserved, h is related at anytime to the
mean area fraction of the suspension �� by h �� ¼ �d2�=4.
In the following, � ¼ 7:64d�1 unless otherwise stated.
Steady state is achieved when the height fluctuates about

a constant mean value h1, i.e., constant mean area fraction
��1 ¼ �d2�=4h1. The system reaches the same steady
state regardless of the initial particle distribution.
For a fixed �0, we observe two different steady-state

regimes depending on the relative importance of sedimen-
tation and shear-induced diffusion. The first regime resem-
bles what is obtained in conventional viscous resuspension
[14] and corresponds to the highest sedimentation veloc-
ities. Sedimentation and shear-induced diffusion compete
such that an exponential density profile is established near
the bottom, as shown by the dashed line in Fig. 2(b). The
system is far from an absorbing state with most of the
particles constantly colliding.
The second regime is obtained as vs is reduced towards

zero: in steady state, clusters of active particles nucleate at
the bottom wall and diffuse until the activity dies when the
particles reorganize into a new reversible configuration.
Figure 2(a) shows a snapshot of such a steady state with
active particles close to the bottom wall and others at a
finite height after activity has diffused away from the
bottom. Particle density is nearly uniform in this regime,
as illustrated by the full line profiles in Fig. 2(b).
This second regime is the one of interest for SOC. In this

case, for a given �0, ��1 fluctuates around a value that is
near the critical concentration �cð�0Þ delimiting the ab-
sorbing and active steady states for the case without sedi-
mentation. The transition between the regime with height-
dependent profiles and the regime with nearly uniform
profiles can be characterized by a dimensionless number
A � �D=�s expressing the ratio of a characteristic time for
shear-induced diffusion �D to a characteristic time for
sedimentation �s.
The uniform profile, if it is reached, is obtained near

the critical point, meaning that ��1 � �cð�0Þ and
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FIG. 2 (color online). Simulation: (a) Detail of the particle
distribution in steady state. Particles are represented by circles of
diameter d, the interaction distance. Filled symbols represent
particles that will collide and diffuse irreversibly in the next
shear cycle. (b) Area fraction profiles in steady state. Full lines
show profiles in the A < 1 regime for two strain amplitudes �0 ¼
10, A ¼ 0:78 (blue or dark gray) and �0 ¼ 3, A ¼ 0:24 (red or
gray) (vs ¼ 10�4d=cycle). The dashed line shows the profile in
the A > 1 regime for �0 ¼ 3, A ¼ 2:4 (vs ¼ 10�3d=cycle).
Profiles are averaged over 2� 104 shear cycles. Inset: ��1=�c

as a function of A for several data sets: �0 ¼ 0:5, 2.66, 3, and 10;
4:5< �< 20d�1; 5� 10�5 < vs < 10�2d=cycle.
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h1 � �d2�=4�cð�0Þ. In the absence of diffusion, the area
fraction at the bottom wall would increase due to sedimen-
tation from �c to 2�c in a time �s ¼ �=vs, where � ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�d2=4�c

p
is the mean interparticle spacing. Shear-

induced diffusion redistributes this increase in � through-
out the whole suspension height h1 in a time �D ¼
h12=4D, where D is the diffusivity under strain amplitude
�0 and at area fraction 2�c. The ratio of these two times is
given by the dimensionless number

A ¼ �D
�s

¼
�
�

�c

�
3=2 d3�2vs

4D
: (1)

As expected, A goes to zero when gravity vanishes. It
describes the transition between the two steady-state re-
gimes remarkably well [see Fig. 2(b) inset]. All data col-
lapse onto a single master curve. For A > 1, shear-induced
diffusion cannot homogenize the suspension. The area
fraction varies strongly along the sedimentation axis and
��1 >�c. For A < 1, transport is dominated by shear-
induced diffusion. The system finds steady states with
sharp profiles and a mean area fraction that fluctuates
around the critical value �cð�0Þ.

To study the criticality of the steady states in the A < 1
regime, we measure the probability densities PðsÞ and PðtÞ
of the size and lifetime of active clusters. An active cluster
is defined in both space and time as the sequence of
colliding particles generated by one nucleation event
through process (ii). Figure 3(a) shows the shape in
space-time coordinates for one cluster. Its lifetime t is the

number of cycles from its birth to its death, about
900 cycles in this example. Its size s is determined by
summing the number of active particles in the cluster at
each cycle over its entire life.
Figure 3(b) shows PðsÞ and PðtÞ for three values of �0.

These distributions follow a remarkable power law over
four decades. Fitting these data gives PðsÞ � s�� with � ¼
1:22� 0:05 and PðtÞ � t�	 with 	 ¼ 1:20� 0:05. Such
power-law distributions are the signature of critical behav-
ior. They confirm that the model system exhibits SOC as it
is able to maintain itself near its critical point without any
special tuning but a vanishing external drive, which in this
case is sedimentation.
The case of real non-Brownian suspensions is studied

with the experiment depicted in Fig. 1(a). The suspension
consists of polymethylmethacrylate (PMMA) particles of
diameter d ¼ 230� 20 
m suspended in a viscous liquid.
The suspending liquid is a mixture that is commonly used
to match both the density and refractive index of PMMA
[15]. Its composition is slightly altered to create a density
mismatch and induce particle sedimentation. In this liquid,
a lone tracer particle sediments at about 0:006�
0:002 
m=s at 20 �C. Fluorescent dye is also added to
the fluid so that particles appear as dark spots in the plane
of a sheet of laser light 200–300 
m thick, as shown in
Fig. 1(b). The Couette cell and imaging system are de-
scribed elsewhere [11,12].
To start, the suspension is sedimented in a random

packing resting on a layer of mercury at the bottom of
the cell. An oscillatory shear is then applied by rotating the
inner cylinder back and forth about its axis. The strain
amplitude �0 of these oscillations starts at 0.2 and increases
in steps up to 5.0. Approximately 1500 shear cycles for
each �0 step are necessary to reach steady state. Two series
of experiments are performed for oscillation periods of 5
and 25 s, which gives a sedimentation velocity vs for a lone
particle of about 0:03 and 0:15 
m=cycle, respectively. In
those conditions, the Reynolds number of the system [11]
is kept less than 10�2, where the motion of pure fluids is
reversible.
In steady state, the suspension has a very uniform vol-

ume fraction, as can be seen in Fig. 1(b). The height-
dependent particle density is determined by counting the
number of particles at a height z in a portion of the laser
sheet. Figure 4(a) shows the steady-state profiles �1ðzÞ
obtained for various strain amplitudes. For each �0, these
profiles have a well-defined height h1ð�0Þ and exhibit
almost no dependence on z. The steady-state mean volume
fraction can then be given by ��1ð�0Þ ¼ �0h0=h

1ð�0Þ
where h0 and �0 are the height and volume fraction of
the fully sedimented suspension. Here, h0¼5:0�0:3mm
and we choose �0 ¼ 0:6� 0:04 based on other measure-
ments with the error bars indicating the uncertainty.
Figure 4(b) shows ��1ð�0Þ for the two values of vs as

well as �cð�0Þ for the critical case of neutrally buoyant
suspensions [11,12]. The critical values �c are determined
separately by varying �0 in experiments with different �.
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FIG. 3 (color online). Simulation: (a) Particles forming an
active cluster in space-time coordinates. Symbols represent
particle centers with their color changing with time from cluster
nucleation. The cluster nucleates at the bottom wall ðx; y; tÞ �
ð�4; 0; 0Þ and lasts nearly 900 cycles. (b) Distributions of cluster
lifetime (top) and size (bottom) for three different strain ampli-
tudes �0 ¼ 10, A ¼ 0:78 (e); �0 ¼ 3, A ¼ 0:24 (�), and �0 ¼
0:5, A ¼ 0:12 (4) (vs ¼ 10�4d� cycle�1). 200 to 600 clusters
are recorded over 9� 104 cycles. Lines show power-law fits
PðtÞ � t�1:20 and PðsÞ � s�1:22
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For �0 < 1, �1ð�0Þ and �cð�0Þ are undistinguishable
within the experimental error and the suspension is in a
near critical steady state. For larger �0, however, the gap to
criticality � ��1ð�0Þ ¼ ��1ð�0Þ ��cð�0Þ increases and
suspensions are denser than in their critical state.

As for the 2Dmodel, this transition to the critical steady-
state regime is well described by the dimensionless ratio A.
For the 3D geometry of the experiment,

A ¼
�
�

6�c

�
5=6 d5�2vs

4D
: (2)

Here, � ¼ 6h0�0=�d
3 is the number of particles stacked

per unit area in the z direction.
In the real case, hydrodynamic interactions between

particles induce some additional dependence on �. In
particular, particle sedimentation within a sheared suspen-
sion is strongly hindered by interparticle interactions. A
more realistic sedimentation velocity is given by ~vs ¼
fð�cÞvs where fð�Þ is a decreasing function of � that
equals 1 for � ¼ 0. Here, we use the hindrance function
defined in [14]. Measurements in neutrally buoyant sus-
pensions also show that diffusivity along the z axis scales
as D0�

2ð�=�c � 1Þ� with D0 � 0:02� 0:01d2=cycle
and � � 1:3� 0:3. Hence, we determine the diffusivity
at� ¼ 2�c using ~D ¼ 4�2

cD0 where�c is estimated from
the power-law fit shown in Fig. 4(b).

The inset in Fig. 4(b) shows ��1=�c as a function of A
calculated with ~vs and ~D. As for the model, a transition is
observed around A ¼ 1 and the mean volume fraction
approaches the critical value as the densification due to
gravity is suppressed by shear-induced diffusion through
the suspension height (A ! 0). For increasing �0, �c goes
to 0 scaling as 1=�0 and fð�cÞ ’ 1. As a result, A increases

as 1=�17=6
c , much more rapidly than in the 2D model. This

suggests that SOC states are more easily attained experi-
mentally for small strain amplitudes, consistent with the
data presented in Fig. 4(b), and for suspension beds with
few stacked particles (� 	 1).
Perhaps the clearest previous observation of SOC is that

of Moeur et al. [7], who observed SOC in liquid 4He near
the equilibrium superfluid transition. By contrast, here
SOC is observed near a nonequilibrium transition. In early
models of SOC involving nonequilibrium avalanches, the
origin of the criticality was not always clear. Here, the
criticality comes from a nonequilibrium phase transition
recently identified by Corté et al. [12], who suggested that
the transition was an absorbing phase transition, possibly
related to conserved directed percolation [16]. It may be
that other systems exhibiting SOC have the same type of
criticality observed in this system. Indeed, this is what has
been suggested by Dickman et al. [1,2] for sandpile models
such as the Manna model.
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FIG. 4 (color online). Experiment: (a) Particle density profiles
in steady state for �0 ¼ 2:8 (left), 1.0 (middle), and 0.2 (right).
Profiles are averaged over 50 shear cycles. Error bars correspond
to standard deviations. (b) Steady-state volume fraction as a
function of �0. Solid symbols show mean volume fraction
��1(�0) measured in the sedimenting case for two different os-
cillation periods (d: 25 s, j: 5 s). Open symbols (�) show the
critical line �cð�0Þ as measured with neutrally buoyant suspen-
sions. The line is a power-law fit scaling as ð1=0:6þ �0Þ�1.
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