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We develop a theory of far from the equilibrium transport in arrays of tunnel junctions. We find that if

the rate of the electron-electron interactions exceeds the rate of the electron-phonon energy exchange, the

energy relaxation ensuring the charge transfer may occur sequentially. In particular, cotunneling transport

in arrays of junctions is dominated by the relaxation via the intermediate bosonic environment, the

electron-hole excitations, rather than by the electron-phonon mechanism. The current-voltage character-

istics are highly sensitive to the spectrum of the environmental modes and to the applied bias, which sets

the lower bound for the effective temperature. We demonstrate that the energy gap in the electron-hole

spectrum which opens below some critical temperature T� due to long-range Coulomb interactions gives

rise to the suppression of the tunneling current.

DOI: 10.1103/PhysRevLett.103.247003 PACS numbers: 74.50.+r, 72.10.�d, 73.23.�b, 73.63.�b

Transport in mesoscopic tunnel junctions is ensured by
the energy exchange between the tunneling charge carriers
and energy reservoirs: since the electronic energy levels at
the banks of the mesoscopic junctions are, in general,
different, the tunneling is impossible unless there is a
subsystem of excitations capable of accommodation of
this energy difference [1–7]. Intense studies of nanostruc-
tured and disordered systems including Josephson junc-
tions [8], mesoscopic superconductors [9], patterned
superconducting films [10], highly disordered supercon-
ducting and semiconducting films [11–14] reveal a prime
importance of the out-of-equilibrium properties of an en-
vironment to which the tunneling charge carriers relax the
energy. Notably, the relaxation processes can be mediated
not only by phonons but by the energy exchange with the
electromagnetic environment [1,3–7,15,16] and with the
electron-hole (e-h) pairs generated by the tunneling car-
riers [17,18]. The energy relaxation in mesoscopic tunnel
junctions in the case where the energy exchange between
the tunneling carriers and the electromagnetic and/or
electron-hole reservoir, 1=�env-e, is comparable to the
rate of the energy loss to the phonon thermostat,
1=�env!bath, was analyzed in [19]. In this Letter we develop
a general approach to the description of the strongly non-
equilibrium processes where 1=�env-e � 1=�env!bath and
show that the energy relaxation enabling the tunneling
current occurs in two stages: (i) The energy relaxation
from the tunneling charges to the intermediate bosonic
modes (electromagnetic or electron-hole excitations)
which we hereafter call the environment; and (ii) The
energy transfer from the environment to the phonon ther-
mostat, to which we will be further referring as to a bath.

We demonstrate that the transport is controlled by the
first stage and is thus critically sensitive to the spectrum of
the environmental modes. At the same time, the passing

current drives the environment out of the equilibrium, and
the environment spectrum and effective temperature may
become bias-dependent themselves. We derive the coupled
kinetics equations for the charge carriers and out-of-
equilibrium bosonic environment and apply our technique
to tunneling transport in large arrays of normal and super-
conducting junctions.
A single junction.—First, we consider a tunnel junction

between two bulk metallic electrodes biased by the exter-
nal voltage V; see Fig. 1(a). A general formula for the
tunneling current reads

I ¼ eð�
!
� �
 
Þ; (1)

where �
!
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) is the tunneling rate from the left (right) to the

right (left), and, for a single junction,

�
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FIG. 1 (color online). (a) The effective circuit for the tunnel
junction subject to bias V and with the environment having the
impedance Z. (b)–(c) Diagrammatic expansion of P< to the first
and the second orders in �, respectively. The solid lines represent
propagation of electrons, the dashed lines denote the environ-
ment excitations. The vertex with the two electron lines and one
dashed line carries a factor GT�ð!Þ=!, the ‘‘two dashed-lines
vertex’’ corresponds to GT�ð!Þ�ð!0Þ=ð!!0Þ.
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where fð1;2Þ are the electronic distribution functions within
the electrodes, P<ð�Þ is the probability for the charge
carrier to lose the energy E to the environment, and RT is
the bare tunnel resistance, representing the interaction of

electrons with the bath. The backward scattering rate, �
 
/R

��0 f
ð2Þ
� ð1� fð1Þ�0 ÞP<ð�� �0Þ. If an intermediate environ-

ment is absent and the relaxation is provided by the phonon
bath, then P<ð�Þ ¼ �ð�Þ and Eq. (2) reproduces the con-
ventional Ohm law. The quasiequilibrium situation where
the distribution functions of the environmental modes N!

are Bose distributions parameterized by the equilibrium
temperature was discussed in [2,5,20]. In a general, far
from the equilibrium case, we find

P<ðEÞ ¼
Z 1
�1

dt exp½JðtÞ þ iEt�; (3)

JðtÞ ¼ 2
Z 1
0

d!

!
�ð!ÞFð!Þ; (4)

Fð!Þ ¼ ½N!e
i!t þ ð1þ N!Þe�i!t � B!�: (5)

Here exp½JðtÞ� is the nonequilibrium generalization of the
Feynman-Vernon influence functional [21] reflecting that
tunneling electrons acquire random phases due to interac-
tions with the environment, represented by a set of oscil-
lators with the nonequilibrium distribution of modes, N!.
The latter is defined by the kinetic equation with the
scattering integral describing the energy exchange between
environmental modes and tunneling electrons. Terms pro-
portional to theN! and 1þ N! correspond to the absorbed
and emitted environmental excitations, respectively. The
combination B! ¼ 1þ 2N! is the kernel of the time-
independent contribution to J describing the elastic inter-
action of the tunneling electron with the environmental
modes and having the structure of the Debye-Waller factor.
In an equilibrium, N! reduces to the Bose-function and the
functional P< recovers the result by Ref. [20]. The spectral
probability of the electron–(electromagnetic) environment
interaction is �ð!Þ ¼ Re½Ztð!Þ�=RQ, where Zt ¼

1=½iC!þ Zð!Þ�1� is the total circuit impedance, Z is the
environment impedance, C is the junction capacitance, and
RQ is the quantum resistance [5]. Proceeding analogously

to Ref. [22], one finds the spectral probability correspond-
ing to the electron-environment interaction within each
electrode as �nð!Þ ¼ 2Im

R
q
~Un=ðDnq

2 � i!Þ2, n ¼ 1,

2, and that for the interaction across the junc-
tion, �12ð!Þ¼�2Im

R
q
~U12=½ðD1q

2� i!ÞðD2q
2� i!Þ�,

where D1ð2Þ are diffusion coefficients within respective

electrodes, and ~U1ð2Þ are the dynamically screened

Coulomb interactions within (across) the electrodes. The
form of �12ð!Þ [and in more general case of �ð!Þ] depends
on the structure of the environmental excitations spectrum
and, thus, on the external bias. The latter is especially
important in the array of highly transparent junctions
where �ð!Þ is different for elastic and inelastic processes
[1,23]. In particular, for the e-h environment with constant
~U, one should cut off the (diverging) integral at qT ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=�’ðTeffÞD

q
[24], when calculating �ð0Þ. Here �’ is the

electron inelastic time and Teff (bias dependent) effective
temperature of the environment defined below. This allows
us to formulate a recipe: if in an equilibrium � ¼ �ð!; TÞ
then in an out-of-equilibrium state � ¼ �ð!;TeffÞ.
To close the set of formulas (1)–(5) one has to add the

kinetic equations (KE) for the boson distribution functions
N!. To derive these KE we use a semiphenomenological
kinetic approach of [25] and express the current of Eq. (1)
through the electronic distribution function as I ¼R
�1
½dfð1Þ�1 =dt��1. Here �1ð2Þ is the density of states in the

lead 1(2) and dfð1Þ�1 =dt ¼ Icol, where Icol is the collision
integral describing the evolution of the electronic distribu-
tion function due to energy and/or momentum transfer
processes. Expanding further P< with respect to � we
obtain, in the zero order in N!, the collision integral in a

form Ið0Þcol¼�
R
W12½fð1Þ�1 ð1�fð2Þ�2 Þ�fð2Þ�2 ð1�fð1Þ�1 Þ��ð�1�

�2Þ�2d�2, where W12 ¼ 1=�1�2RT is proportional to the
bare probability for an electron to be transmitted from one
lead to the other. In the first order

dfð1Þ�1
dt
¼ �

Z
d!�!�2d�2

�
�

!�!

�
W12f�ð�12 �!Þ½fð1Þ�1 ðN! þ 1Þð1� fð2Þ�2 Þ � ð1� fð1Þ�1 ÞN!f

ð2Þ
�2 �

þ �ð�12 þ!Þ½fð1Þ�1 N!ð1� fð2Þ�2 Þ � ð1� fð1Þ�1 ÞðN! þ 1Þfð2Þ�2 �g; (6)

where �12 ¼ �1 � �2 and �! is the density of environmen-
tal states [26]. The structure of Ið1Þcol is identical to that of the
electron-phonon scattering integral in metals [25], where
N! would stand for the phonon distribution functions. The
quantity �=!�! is proportional to the probability of the
electron-environment scattering.

The collision integral dual to Ið1Þcol and describing the

evolution of N! is derived analogously, and the resulting
kinetic equation is�

dN!

dt

�
e-env
¼�A�ð!Þ

�!RT

½N!ð1þn!Þ�ð1þN!Þn!�; (7)

where A is the numerical factor of order of unity, n! is the
electron-hole pairs distribution function. The scattering
integral in Eq. (7) is also identical by its structure to the
phonon-electron scattering integral in metals [25]. For the
electron-hole environment (i ¼ 1, 2 label the electrode in

which the pair is located), one has nðiÞ! ¼ ð1=!ÞR� f
ðiÞ
�þð1�

fðiÞ��Þ, where �� ¼ ��!=2; this agrees with the results of
Ref. [27] where the nonequilibrium boson distribution
function is equivalent to our 1þ 2n!. If electrons and

holes belong to different electrodes, nðijÞ! ¼ ð2!Þ�1�R
� f
ðiÞ
�þ�

x
ijð1� fðjÞ��Þ, �̂x being the Pauli matrix. From (7)
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one estimates the rate of the energy exchange between the
environment and the tunneling electrons as: 1=�env-e ¼
�ð!Þ=�!RT . Now one has to compare 1=�env-e with the
rate of the interaction of the environment modes with the
(phonon) bath, 1=�env!bathð!Þ. For the electron-hole envi-
ronment, 1=�env!bathð!Þ is determined from Eq. (7) to
which the electron-phonon scattering integral is added. If
�env!bath � �env-e, the two-stage relaxation takes place
and the characteristic energy transfer from tunneling cur-
rent is !�maxfTe; Vg, where Te is the electronic tem-
perature in the leads. The electromagnetic environment
mediates the two-stage relaxation in the case where
Ohmic losses occur in a LC superconducting line and are
small [26]. To take a typical example, in aluminum meso-
scopic samples �env-e ¼ 10�8 sec and �env!bath ¼
10�6 sec [16], so the conditions for the two-stage relaxa-
tion are realized. Then the distribution functions, N!,
deviate significantly from the Bose distribution with the
temperature of the phonon bath. They should be deter-
mined from the condition that the collision integral of the
environmental modes with the e-h pairs accompanying the

current flow becomes zero, and Eq. (7) yields N! ffi nð12Þ! .
If Te 	 V, then N! can be approximated by the Bose
function with some effective temperature Teff at !< V ¼
Teff and N! ¼ 0 at !> Teff (the emission of the excita-
tions with the energy larger than V is forbidden), and

Teff 
 lim
!!0

!N! ¼ 0:5V cothðV=2TÞ: (8)

This result shows that the system with the environment
well isolated from the bath cannot be cooled below Teff .
Note that the coth expression for Teff obtained in the first
approximation in �. In general case, Teff depends on �.

Equations (1)–(7) give the full description of the kinetics
of the tunneling junction in a nonequilibrium environment.

To derive the I-V characteristics we find N! ffi nð12Þ! and
plug it into Eqs. (1)–(4). Introducing the parameters g�1 ¼
�ð0Þ and �, the characteristic frequency of the �ð!Þ decay
[for the Ohmic model [20], � ¼ g�1=f1þ ð!=�Þ2g and
�=g is of the order of the charging energy of the tunnel
junction], we find

I � V

RT

ln
�

V
; (9)

in the interval T 	 V 	 �, where Teff ’ V. Note that
IðVÞ given by Eq. (9) differs from the power law depen-
dence obtained in [20] for Te ¼ Teff ¼ 0. This shows that
tuning the environment one can control the IðVÞ character-
istics of the tunnel junction (the gating effect). At high
voltages, V � �, one finds

IðVÞ ’ ðV � �1Þ=RT; (10)

�1 ¼ iJ0ð0Þ ¼ 2
R1
0 d!�!½1þNðoutÞ! �NðinÞ! � ’�ð0Þ1 lnð�=

minfTe;TenvgÞ, where �ð0Þ1 ¼ �1½NðoutÞ ¼ NðinÞ� ��=g,

since at V � �, NðoutÞ! ’ �=!� NðinÞ! .
Arrays of tunnel junctions.—Extending Eq. (2) onto an

array comprised of N junctions one finds

~� ¼
�YN
i¼1

RQ

4�2Ri

�
S2

Z
d�d�0f1ð�Þ½1� f2ð�0Þ�Pð�� �0Þ;

(11)

where

PðEÞ ¼
Z 1
�1

dt expðiEtÞ
�Z 1

0
d!

�ð!Þ
!

� Y
j�N�1

½NðinÞ!;je
i!t þ ð1þ NðoutÞ!;j Þe�i!t�

�
: (12)

Here S ¼ E�ðN�1Þc NN=ðN � 1Þ!, and Ec ¼ e2=2C is the
Coulomb charging energy of a single junction (C is a single
junction capacitance) and for the Cooper pair transport
e! 2e. Equations (11) and (12) were derived in a first
order in tunneling Hamiltonian. Shown in Fig. 2 is a
diagrammatic representation of Eq. (12) for N ¼ 3.
A generalization of the results obtained for a single

junction including the structure of the collision integral
and the concept of the effective temperature Eq. (8), onto
large arrays is straightforward. As long as temperatures are
not extremely low [17], the charge transfer in large arrays
is dominated by the inelastic cotunneling and the two-stage
energy relaxation. The tunneling carriers generate e-h pairs
[17,18] serving as an environment exchanging the energy
with the tunneling current and then slowly losing it to the
bath. It is instructive to consider a two-dimensional array

of superconducting tunnel junctions. On the distances L <

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
C=C0

p
, where C0 is the capacitance of a single junc-

tion to the ground, the Coulomb interaction between
charges is logarithmic. If the size of an array does not
exceed �, the e-h plasma comprising the environment
experiences the charge Berezinskii-Kosterlitz-Thouless

FIG. 2 (color online). (a) The single electron two-islands’
circuit. (b)–(e) Diagrams describing the forward inelastic cotun-
neling rate. The ‘‘up’’ arrows stand for the e-h pairs excited
during the cotunneling and the ‘‘down’’ arrows correspond to the
recombination of the e-h pairs. The vertices shown by boxes are
proportional to the probability of an elemental e-h pair excita-
tion, �ð!Þ=!.
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(BKT) transition [28,29] at T ¼ TBKT ’ Ec [29]. This
implies that at T ’ Ec the energy gap T� opens in the
spectrum of unbound electrons and holes and, as a result,
�ð!Þ vanishes in the interval 0<!< T�. One than sees
from Eq. (11) that opening the gap suppresses both Cooper
pairs- and normal quasiparticle currents in the supercon-
ducting tunneling array at T < Ec. Analyzing contribution
from higher orders into cotunneling process, one finds that
the current suppression holds in all orders. This picture
applies to the films close to superconductor-insulator tran-
sition (SIT) [12]. Indeed, near the SIT the dielectric con-
stant " of the film diverges [30] and on the distances
L < "d, where d is the film thickness, the 2D e-h environ-
ment experiences the BKT transition. Thus opening the
gap in the electron-hole spectrum due to long-range
Coulomb effects and the resulting suppression of the tun-
neling current offers a microscopic mechanism for the
insulator-to-superinsulator transition [31,32].

The notion of the two-stage relaxation is a key to resolv-
ing the controversy of the variable range hopping (VRH)
conductivity in both doped semiconductors [33,34] and
disordered superconducting films [12]: the observed uni-
versal preexponential factor indicates that the energy re-
laxation is due to electron-electron (e-e) rather than the
electron-phonon interactions. On the other hand, according
to [35,36] e-e relaxation cannot ensure a finite conductivity
below the so called many-body localization temperature
[36]. The sequential relaxation of hopping electrons via the
e-h environment, which further transfers energy to the
phonon bath implies that the prefactor in hopping conduc-
tivity is indeed proportional to e2=@.

In conclusion, we have developed a quantitative descrip-
tion of the highly nonequilibrium tunneling transport in
arrays of tunnel junctions in the limit 1=�env-e �
1=�env!bath and demonstrated that the low-temperature
relaxation ensuring the tunneling current occurs via an
intermediate electromagnetic and/or e-h pairs environ-
ment. We argued that the onset of the gap in the spectrum
of environmental excitations suppresses the tunneling cur-
rent. In particular, the gap due to Coulomb interactions in
superconducting arrays offers a microscopic mechanism
for the insulator-superinsulator transition.
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