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We construct a theory of coherent transport through a ballistic quantum dot coupled to a supercon-

ductor. We show that the leading-order quantum correction to the two-terminal conductance of these

Andreev quantum dots may change sign depending on (i) the number of channels carried by the normal

leads or (ii) the magnetic flux threading the dot. In contrast, spin-orbit interaction may affect the

magnitude of the correction, but not always its sign. Experimental signatures of the effect include a

nonmonotonic magnetoconductance curve and a transition from an insulator-like to a metal-like

temperature dependence of the conductance. Our results are applicable to ballistic or disordered dots.
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Introduction.—Low temperature experiments on diffu-
sive metals coupled to superconductors have reported large
interference effects analogous to coherent backscattering,
weak-localization, and Aharonov-Bohm oscillations [1–7],
1 to 2 orders of magnitude above the universal amplitude
Oðe2=hÞ they have in purely metallic mesoscopic conduc-
tors [8]. In some cases, a weak localization-like behavior,
in the form of positive magnetoconductance near zero
field, is observed [2,7], but often one sees negative mag-
netoconductance [3–6]. Theoretical works predict that
Andreev reflection from the superconductor induces this
large quantum correction to transport [9,10]. The general
expectation is that this correction is similar to a magnified
weak-localization correction, in that its sign is determined
by the presence or absence of spin-orbit interaction (SOI)
[8,11]. In this Letter, we revisit this issue, and find that this
interference correction has very different properties from
weak localization. In particular, we show that both the
specific lead-geometry and an applied magnetic flux can
reverse its sign, while SOI need not.

Andreev reflection [12] is the dominant low energy
process at the interface between a metal and a supercon-
ductor. It involves an electron (hole) being retroreflected as
a hole (electron) and retracing the path previously followed
by the electron (hole). In this Letter, we extend the
trajectory-based semiclassical theory to include Andreev
reflection and analyze the conductance of a two-
dimensional ballistic quantum dot coupled to one super-
conducting lead and two normal leads, as in Fig. 1. We dub
this system an Andreev quantum dot. We arrive at the
surprising conclusion that the interference effects can be
reversed from localizing to antilocalizing by changing the
widths of the normal leads, or by threading a fraction of a
magnetic flux quantum through the dot. In contrast, SOI
need not cause such a reversal. This is very different from
weak localization in purely metallic conductors, whose
sign is solely determined by the presence or absence of
SOI [8,11,13]. We predict two clear experimental signa-
tures of these interference effects in the form of nonmono-

tonic magnetoconductance curves (see Fig. 3) and a
transition from an insulator-like to a metal-like tempera-
ture dependence of the conductance as one changes the
magnetic field or the ratio of the lead widths. This tran-
sition occurs because thermal averaging destroys quantum
interferences; thus, depending on the sign of the effect, the
conductance increases or decreases by many times e2=h as
the temperature increases.
Semiclassical transport with superconductivity.—

According to the scattering approach to transport, the
current in normal lead i is given by [14]
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where�j is the chemical potential of normal (N) lead j and

�S of all the superconducting (S) leads. The Fermi-Dirac

FIG. 1 (color online). (a) A two-dimensional Andreev quan-
tum dot in a three-terminal geometry, with two normal (N) and
one superconducting (S) lead. (b), (c) The two possible two-
terminal setups obtained from such a dot. Either (b) the S lead is
contacted to one of the N leads, or (c) the S lead is floating.
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distribution, fð"Þ, has " measured from �S. Here, we use
trajectory-based semiclassics to find the scattering proba-

bility T��
ij to go from quasiparticle � ¼ e, h (electron,

hole) in lead j to quasiparticle � in lead i. Extending
trajectory-based semiclassics [15–19] to include Andreev
reflection, one has [20]

T��
ij ¼ 1

2�@
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�
�2 exp½i�S=@�: (2)

This expression sums over all classical trajectories �1 and
�2 entering the cavity at y0 on a cross section of lead j and
exiting at y on a cross section of lead i, while converting a
� quasiparticle into an � quasiparticle. The phase �S ¼
S�1 � S�2 gives the difference in action phase accumulated

along �1 and �2, and A� gives the stability of the trajectory

�. In contrast to Ref. [20], we consider the physically more
prevalent situation of an Ehrenfest time negligible against
the dwell time �D inside the dot. In that case, even with
perfect Andreev reflection, quantum uncertainties com-
bined with the chaotic dynamics make the retroreflected
quasiparticle diverge from the incoming quasiparticle path
well before it leaves the dot [21]. Therefore, classical paths
undergoing Andreev reflections consist of electron and
hole segments that do not necessarily retrace each other

all the way. For transmission probabilities hT��
ij i averaged

over energy or dot shape, we must pair the paths �1 and �2
in Eq. (2) in ways that render their action phase difference
stationary. To do this, we either pair a path with a complex
conjugate path, e-e� or h-h�, or we pair an electron path
with a hole path, e-h or e�-h�. Path pairs can meet and
swap pairings at encounters, as shown in Fig. 2. Following
Ref. [16], we distinguish between encounters that lie en-
tirely inside the dot and those that touch a lead.

Feynman rules.—Contributions relevant to current noise
in purely metallic samples [16–19] become relevant for the
calculation of the current itself in the presence of S leads
when they can be made from only two classical trajectories
with some segments as electron and others as holes. From
Refs. [16,18,19] and the above considerations, we derive
the following Feynman rules for calculating transmission
through an Andreev quantum dot. The dot is connected to
normal and superconducting leads, each carrying Ni � 1
andNSj � 1 transport channels, respectively, and we write

NT ¼ P
iNi þP

jNSj. For a perpendicular magnetic field,

b ¼ B=Bc, measured in units of the field Bc ’ ðh=eAÞ�
ð�0=�DÞ1=2 that breaks time-reversal (TR) symmetry in a
quantum dot of area A with time of flight �0, the Feynman
rules read: (i) An e-e� or h-h� path pair gives a factor of
½NTð1þ �b2Þ��1, with � ¼ 1 for time-reversed paths and
� ¼ 0 otherwise. (ii) An e-h or e�-h� path pair gives
N�1

T � ð1� i2"�D þ �b2Þ�1, with upper (lower) sign for
e-h (e�-h�). (iii) An encounter inside the dot and connect-
ing e, e�, h, and h� paths (as in he2II) gives a factor �NT .
(iv) An encounter inside the dot and connecting e, e, e�,
and h paths (as in ee2II) gives a factor of �NTð1þ
i2"�D þ b2Þ; this factor is complex conjugated (c.c.) for
an encounter connecting e, e�, e�, and h� paths. (v) An
encounter touching an N lead i (S lead j) gives a factor of
Ni (NSj). (vi) A path pair that ends at a N lead i (S lead j),

while not in an encounter, gives a factor of Ni (NSj).

(vii) Andreev reflections at S leads involving e ! h give
a factor of 	e�i�Sj while those involving h ! e give a
factor of	ei�Sj (e� ! h� and h� ! e� give the c.c. of these
factors), where �Sj is the S phase on lead j, and 	 ¼
exp½�iarcosð"=�Þ� is the Andreev reflection phase. We
note that these rules equally follow from random-matrix
theory [17].
In our analysis of the consequences of these rules, we

consider temperatures well below the superconducting gap
� where 	 ¼ �i, and consider a single S lead (setting
�S ¼ 0 without loss of generality). The rules indicate that
a path pair going from encounter to encounter reduces the
contribution by a factor ofO½NT�. Thus, to leading order in
NT , we can neglect such (weak-localization) contributions.
This does not restrict the number of encounters because the
price to add an encounter whose additional legs go to S
leads is O½ðNS=NTÞ2�. We therefore take NS=NT � 1 and
expand in the number of uncorrelated Andreev reflections.
Restricting ourselves to O½ðNS=NTÞ2�, we need to con-

sider the contributions shown in Fig. 2 involving no more
than two uncorrelated Andreev reflections. The contribu-
tions to hTee

ij i are

hTee0
ij i ¼ NiNj=NT; (3a)

hTee2I
ij i ¼ NiNjN

2
S=N

3
T; (3b)

hTee2II
ij i ¼ 2NiNjN

2
S

N3
T

Re½ð1þ b2 þ i2"�2DÞ�1�: (3c)

FIG. 2 (color online). Contributions to hTee
ij i (first three) and hThe

ij i (last four) considered in this Letter. Thick green (thin violet) paths
indicate electrons (holes), dashed lines indicate complex-conjugated amplitudes. Normal leads are labeled i, j while the S lead is
superconducting. The contributions are classified by the number of uncorrelated Andreev reflections (ee0 has none, ee2I and ee2II
both have two). The full (open) squares on the S lead indicate a factor of 	 (	�) and the ellipses mark encounters.
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The contributions to hThe
ij i are

hThe1
ij i ¼ NiNjNS=N

2
T; (4a)

hThe2I
ij i ¼ �ijNiN

2
S=fN2

T½ð1þ b2Þ2 þ 4"2�2D�g; (4b)

hThe2II
ij i ¼ �NiNjN

2
S=fN3

T½ð1þ b2Þ2 þ 4"2�2D�g; (4c)

hThe2III
ij i ¼ �hTee2II

ij i: (4d)

Semiclassics gives hThh
ij i ¼ hTee

ij i and hTeh
ij i ¼ hThe

ij i. These
contributions preserve unitarity up to and including

O½ðNS=
P

iNiÞ2�.
Setup with an S lead.—We first consider the situation

where the S lead’s potential is fixed externally. This may be
the three-terminal device of Fig. 1(a) with both the R and S
leads grounded, while the L lead is biased at electrochem-
ical potential�L ¼ eV. Alternatively, this may be the two-
terminal device in Fig. 1(b) with the S and R leads join at a
bulk contact (with contact conductance vastly greater than
the dot), a macroscopic distance away from the dot. In
either case, the L lead current is IL ¼ ð2e2=hÞ�
½gcl þ �gqmðT; bÞ�V, where we define a dimensionless

classical conductance gcl ¼ NLðNR þ 2NSÞ=ðNL þ NR þ
2NSÞ [22]. For NS � N, the quantum interference correc-
tion is

�gqm ¼ NL½NR � 4NLð1þ b2Þ�N2
S

ðNL þ NRÞ3
fðT; bÞ þ �gwl: (5)

In the regime of experimental interest, the weak-
localization correction in the absence of the S lead �gwl ’
�NLNR=½ðNL þ NRÞ2ð1þ b2Þ� is small enough to ne-

glect (as in Fig. 3). The "-integral in Eq. (1) with hT��
ij i

in Eqs. (3) and (4) leads to fðT; bÞ ¼ �
ð2; 1=2þ ð1þ
b2Þ�Þ, with � ¼ ET=4�kBT for a Thouless energy ETh ¼
@=�D, and the generalized 
-function 
ð2; xÞ ¼R1
0 t exp½�xt�=ð1� exp½�t�Þdt. This gives the two

asymptotics fðT ! 1; bÞ ! �ET=½8kBTð1þ b2Þ� and
fðT ! 0; bÞ ! 1=ð1þ b2Þ2.

At zero temperature, we find three regimes for �gqm:

(a) ForNR < 2NL, �gqm < 0 for all values of b, and gives a

monotonic magnetoconductance curve. (b) For 2NL <
NR < 4NL, �gqm < 0 for all b, but gives a nonmonotonic

magnetoconductance, with a minimum at b2 ¼
ðNR � 2NLÞ=ð2NLÞ. (c) For NR > 4NL, �gqm > 0 at small

b, but becomes negative for b2 > ðNR � 4NLÞ=ð4NLÞ, and
then goes to zero for large b. As in (b), the curve is non-
monotonic with minima at b2 ¼ ðNR � 2NLÞ=ð2NLÞ.

These different regimes persist at finite temperature as is
illustrated in Fig. 3; however, the boundary between (a)
and (b), as well as the positions of the minima of the
magnetoconductance curves, are T dependent. The con-
ductance exhibits a metal-like (insulating-like) behavior in
the form of a decrease (increase) of the conductance with
T, depending on the sign of ½NR � 4ð1þ bÞ2NL�. This sign
can easily be changed whenever one has control over the

lead widths or the magnetic flux. Remarkably, a monotonic
magnetoconductance may become nonmonotonic upon
increase of the temperature (dashed curves in Fig. 3).
Setup with an S island.—In the second of the two

possible two-terminal setups, Fig. 1(c), the quantum dot
is connected to a superconducting island, whose chemical
potential is floating, and adapts itself to a value guarantee-
ing current conservation, IL ¼ �IR. Using the expression
in Ref. [14] for the two-terminal conductance in terms of

the transmission probabilities, T��
ij , we obtain g ¼ gislcl þ

�gislqmðT; bÞ where gislcl ¼ NLNR=ðNL þ NRÞ and �gislqm ¼
NLNRN

2
SðNL þ NRÞ�3fðT; bÞ. This reproduces the

random-matrix theory result [10] to leading order in
½NS=ðNL þ NRÞ�2. This quantum correction always in-
creases the conductance (antilocalization) by a parametri-
cally large amount (many e2=h), with a monotonic
magnetoconductance curve.
Mesoscopic conductance fluctuations and current

noise.—Reference [23] used random-matrix theory to
show that conductance fluctuations remain Oðe2=hÞ in
the presence of superconductivity. Our Feynman rules
reproduce this result. Contributions to var½g� are the prod-
uct of any two contributions in Fig. 2 connected by en-
counters. Since path pairs are not swapped at entrance and
exit, the connection must involve at least two additional
encounters with four additional path pairs, and the result-
ing contribution behaves as N�2

T times the average con-
ductance squared. This is at mostOðN0

TÞ; thus, the quantum
corrections to the average conductance are parametrically
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FIG. 3 (color online). Magnetoconductance curves for the
setup of Fig. 1(b). Left panel: kBT ¼ 0:1ET , and NR=NL ¼ nþ
0:2, n ¼ 0; 1; 2; . . . ; 7 (from bottom to top). Right panel:
NR=NL ¼ 0:2 (dashed red line) and 7.2 (dot-dashed blue line),
for kBT=ET ¼ 0:1, 1, 2, 4 and 8 (dashed: from bottom to top;
dot-dashed: from top to bottom). For both panels, the vertical
axis gives �gqm in units of the conductance quantum 2e2=h with

channel numbers chosen such that N2
SN

2
L=ðNL þ NRÞ3 ¼ 5 in all

instances. Note the crossover from monotonic to nonmonotonic
behavior of the magnetoconductance as T increases, for
NR=NL ¼ 0:2 (dashed curves).
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larger than the conductance fluctuations, and are therefore
easily observable.

The S contact also leads to e-h contributions to the
current-noise [24]. The Feynman rules show that they are

O½NTðNS=NTÞn� for n � 1 and are thus smaller than the

O½NT� e-e contributions which give the noise in the ab-
sence of an S lead. Therefore, to leading order in NS=NT ,
the parametric magnitude of the zero-frequency current
noise is unaltered by the presence of the S lead.

Effect of SOI.—Spin-orbit interaction (SOI) can be
treated as rotating the spin along otherwise unchanged

classical trajectories, multiplying Eq. (2) by Tr½d�1dy�2�,
where d�i is the SU(2) phase of path �i [25]. For ee0, ee2I,

and he1, this gives a factor of 2 for spin degeneracy
because d�1 ¼ d�2. However, for ee2II and he2III, it gives

Tr½d21�, and for he2I and he2II, it gives Tr½d21d22�, where d1,
d2 are statistically independent random SU(2) phases.

When the SOI time is shorter than �D, one averages uni-
formly over the SU(2) phases [26], which multiplies ee2II
and he2III by �1=2, and he2I and he2II by 1=4. Taking
T ¼ 0 and neglecting �gwl for simplicity, we find that

�gqm ¼ NL½ð1� 2=�Þ2NR þ 4ð1� 2=�ÞNL�N2
S

ðNL þ NRÞ3
; (6a)

�gislqm ¼ ð1� 2=�Þ2NLNRN
2
S=ðNL þ NRÞ3; (6b)

for the three standard symmetry classes, � ¼ 1 (TR sym-
metry without SOI), 2 (no TR symmetry), and 4 (TR
symmetry with SOI). Note the presence of the same sym-
metry prefactor (1� 2=�) as for weak localization without

superconductivity. Thus, with SOI (� ¼ 4), both �gqm and

�gislqm always enhance conductance. Therefore, SOI must

be absent for a sign change of �gqm with lead width.

Turning on SOI (going from � ¼ 1 to � ¼ 4) never
changes the sign of �gislqm but changes the sign of �gqm
for NR < 4NL.

Concluding remarks.—The derivation outlined here is
for ballistic quantum dots; however the Feynman rules that
we analyze apply to any system well modeled by random-
matrix theory. Thus, our results are equally applicable to
disordered dots. We also expect qualitatively similar be-
haviors in diffusive metals coupled to superconductors at
intermediate temperatures, kBT 	 ET . Work in this regime
is in progress.

Upon completion of this work, we noted Ref. [27] which
uses a somewhat similar methodology as ours in closed
Andreev billiards.
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