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We show that the ground state and magnetization of the macroscopically degenerate shell of electronic

states in triangular gated graphene quantum dots depends on the filling fraction of the shell. The effect of

degeneracy, finite size, and electron-electron interactions are treated nonperturbatively using a combina-

tion of density functional theory, tight-binding, Hartree-Fock and configuration interaction methods. We

show that electronic correlations play a crucial role in determining the nature of the ground state as a

function of filling fraction of the degenerate shell at the Fermi level. We find that the half-filled charge

neutral shell leads to full spin polarization but this magnetic moment can be completely destroyed by

adding a single electron.
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Following the progress in the fabrication of graphene
[1–5] based devices, lower dimensional structures such as
graphene ribbons [6–9], and more recently graphene quan-
tum dots [10–14], are attracting increasing attention due to
their nontrivial electronic and magnetic properties. In par-
ticular, it was shown that when an electron is confined to a
triangular atomic thick layer of graphene with zigzag
edges, its energy spectrum collapses to a shell of degener-
ate states at the Fermi level (Dirac point) [15–19] similar to
the edge states in graphene ribbons [6–9], but isolated from
remaining states by a gap. The degeneracy is proportional
to the edge size and can be made macroscopic. This opens
up the possibility to design a strongly correlated electronic
system as a function of fractional filling of the shell, in
analogy to the fractional quantum Hall effect [20], but
without the need for a magnetic field.

In this work we present new results demonstrating the
important role of electronic correlations beyond the
Hubbard model [15–17] and mean-field density functional
theory (DFT) [17,18]. The interactions are treated by a
combination of DFT, tight-binding (TB), Hartree-Fock
(HF) and configuration interaction (CI) methods. We
show that a half-filled charge neutral shell leads to full
spin polarization of the island but this magnetic moment is
completely destroyed by the addition of a single electron,
in analogy to the effect of Skyrmions on the quantum Hall
ferromagnet [21–24] and spin depolarization in electro-
statically defined semiconductor quantum dots [25–28].
The depolarization of the ground state is predicted to result
in blocking of current through a graphene quantum dot due
to the spin blockade (SB) in single electron transport
[26,28]: the transition between maximally polarized and
depolarized ground states cannot be accomplished by the
addition of a spin of a single electron.

Figure 1(a) shows the electronic density of a zigzag
edged triangular island of N ¼ 97 carbon atoms, separated
by a distance dgate from a metallic gate. At zero applied

voltage the island is charge neutral while applied voltage
leads to removal or addition of electrons to the island. The
single-particle energy spectrum obtained using nearest
neighbor tight-binding method (TB, blue lines) and a
combination of the next-nearest neighbor tight-binding
and Hartree-Fock methods (TBþ HF, black lines) is
shown in Fig. 1(b). As was previously shown by Ezawa
[16], Fernandez-Rossier and Palacios [17], and Wang,
Meng and Kaxiras [18] using the nearest-neighbor TB
method and ab initioDFT calculations, the linear spectrum
of Dirac electrons in bulk graphene collapses to a shell of
degenerate levels at the Fermi energy, well separated in
energy from the valence and conduction bands. Similar to
edge states in graphene ribbons [6–9], the zigzag edge
breaks the symmetry between the two sublattices of the
honeycomb lattice, behaving like a defect. Therefore, elec-
tronic states localized on the zigzag edges appear with
energy in the vicinity of the Fermi level. For a N ¼ 97
atoms island (see Fig. 1) there are Nedge ¼ 7 edge states.

For the charge neutral system there is one electron per each
edge state. A nontrivial question addressed here is the
specific spin and orbital configuration of the electrons as
a function of the size and the fractional filling of the
degenerate shell of edge states. Because of the strong
degeneracy, many-body effects can be expected to be
important as in the fractional quantum Hall effect.
Previous calculations based on the Hubbard approximation
[15–17] and local spin density functional theory [17,18]
showed that the neutral system (half-filling) has its edge
states polarized.
In order to study many-body effects within the charged

degenerate shell via the configuration interaction method,
we first perform a Hartree-Fock calculation for the charged
system of N � Nedge electrons, with empty degenerate

shell and Nedge electrons transferred to the gate, shown in

Fig. 1(a) [29]. The spectrum of HF quasiparticles is shown
with black lines in Fig. 1(b). Because of the mean-field
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interaction with the valence electrons and charged gate, a
group of three states is now separated from the rest by a
small gap of �0:2 eV. The three states correspond to HF
quasiparticles localized in the three corners of the triangle.
The same physics occurs in density functional calculation
within local density approximation (LDA), shown with red
lines in Fig. 1(b). Hence we see that the shell of almost
degenerate states with a well defined gap separating them
from the valence and conduction bands exists in the three
approaches.

The wave functions corresponding to the shell of nearly-
degenerate zero-energy states obtained from TB-HF cal-
culations are used as a basis set in our configuration
interaction calculations where we add Nadd electrons

from the gate to the shell of degenerate states. In Fig. 2,
total spin S of the ground state as a function of the filling of
the degenerate shell is shown for different sizes of quantum
dots. Three aspects of these results are particularly inter-
esting. (i) For the charge neutral case (Nadd � Nedge ¼ 0),

for all the island sizes studied (Nedge ¼ 3–7), the half-filled

shell is maximally spin polarized as indicated by red (light
gray) arrows, in agreement with our DFT calculations
which reproduce previous work [17,18]. The polarization
of the half-filled shell is also consistent with the Lieb
theorem for the Hubbard model for a bipartite lattice
[30]. (ii) The spin polarization is fragile. If we add one
extra electron (Nadd � Nedge ¼ 1), magnetization of the

island collapses to the minimum possible value, as indi-
cated by blue (dark gray) arrows in Fig. 2. Full or partial
depolarization occurs for other filling numbers. (iii) The
spin phase diagram is not necessarily symmetric around
Nadd � Nedge ¼ 0. The main reason for the broken

electron-hole symmetry is the imbalance between the two
types of atoms of the honeycomb lattice in the triangular
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FIG. 2 (color online). Spin phase diagram from the TB-HF-CI
method for different sizes of the triangular dot characterized by
the number of edge states Nedge, as a function of the filling of the

zero-energy states Nadd � Nedge ¼ 0. Charge neutral case corre-

sponds to Nadd � Nedge ¼ 0, for which the total spin of the zero-

energy electrons are always maximized (S ¼ Nedge=2, indicated

by red [light gray] arrows). On the other hand, if the quantum dot
is charged by 1 electron (Nadd � Nedge ¼ 1) then the total spin

has minimum value, i.e. S ¼ 0 if Nadd is even, S ¼ 1=2 if Nadd is
odd (indicated by blue [dark gray] arrows).
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FIG. 1 (color online). (a) Electronic density in a triangular
graphene island of 97 carbon atoms where 7 electrons were
moved to the metallic gate at a distance of dgate. (b) Single-

particle spectrum of the structure in (a), obtained by tight-
binding (TB, blue lines) and self-consistent Hartree-Fock (TBþ
HF, black lines) methods. The 7 zero-energy states near the
Fermi level are compared to DFT results. In Hartree-Fock and
DFT calculations 7 electrons were removed, leaving the zero-
energy states empty. The dielectric constant � is set to 6. Inset
compares the structure of corner and side states obtained using
Hartree-Fock and DFT calculations. In DFT calculations, hydro-
gen atoms were attached to dangling bonds.
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zigzag structure (the next-nearest neighbor hoping also
contributes to the breaking of the symmetry). The broken
electron-hole symmetry can be seen from Fig. 1 where the
corner states are separated from the rest of the zero-energy
states by a small gap. As a result, there is a delicate
competition between total kinetic energy and the interac-
tion energy as a function of the size of the triangle and the
number of electrons, causing the nonsymmetric behavior
of the spin phase diagram for Nedge ¼ 4, 6 and 7. Finally,

the spin depolarization at half-filling was found to be
insensitive to the screening of electron-electron interac-
tions, as values of dielectric screening constant � between
2 and 8 led to the same behavior of the charge neutral and
single electron charged cases (not shown).

In order to illuminate the depolarization process as an
electron is added to the charge neutral maximally spin
polarized system, in Figs. 3(a) and 3(b) we show the orbital
occupancy of up-spin zero-energy states at Nadd � Nedge ¼
1, for the fully polarized state S ¼ 3 (upper panel) and for
the ground state, S ¼ 0, (lower panel) for the Nsite ¼ 97
atoms quantum dot with 7 zero-energy states shown in
Fig. 1. For the large spin S ¼ 3 case, the added spin-up
electron simply occupies the orbital 1 and its spin is
opposite to the spins of the other 7 electrons. However,
the true ground state has S ¼ 0, with the spin occupancy
shown in the lower panel. The added electron causes
electrons already present to partially flip their spin, with
spin-up density being delocalized over all the 7 orbitals in
analogy to Skyrmion-like excitations in quantum dots and
quantum Hall ferromagnets [21–24]. The correlated nature
of the S ¼ 0 spin depolarized ground state is illustrated by
the up-up spin pair correlation functions given by
h�"ðr0Þ�"ðrÞi, shown in Figs. 3(c) and 3(d). The location

of the fixed up-spin electron at site r0 is schematically
shown with an up arrow. The up-up spin correlation func-
tion for the S ¼ 3 spin polarized system is strictly zero as

there are no other spin-up electrons. The spin correlation
function for the spin depolarized ground state with S ¼ 0
shows the exchange hole at r0, which extends to the nearest
neighbors, and, more interestingly, for larger jr0 � rj, the
spin pair correlation function reveals a spin texture:
Beyond the exchange hole there is the formation of an
electronic cloud with positive magnetization which de-
creases and changes sign at even larger distance, again
consistent with the Skyrmion picture [21,22].
Experimentally, spin properties of quantum dots can be

probed using Coulomb and spin blockade spectroscopy
[28]. By connecting graphene quantum dot to leads and
measuring the conductance as a function of gate voltage,
one obtains a series of Coulomb blockade peaks. The
relative position of these peaks and their height reveal
information about the electronic properties of the system
as the number of electrons is increased. The amplitude of

0 1 2 3 4 5 6 7 8
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

O
cc

up
an

cy
 O

cc
up

an
cy

 Edge state index

(b)

(a)

(d)

(c)

FIG. 3 (color online). Left panel: Orbital occupancy of the 7
zero-energy states by spin-up electrons, for the charged (Nadd �
Nedge ¼ 1) system, for (a) S ¼ 3 and (b) S ¼ 0 total spin states.

The ground state is S ¼ 0 (see Fig. 2). Right panel: Corre-
sponding spin up-up pair-correlation functions h�"ðr0Þ�"ðrÞi.
The fixed spin-up electron is represented by a red arrow, and
its position r0 by a red circle.

FIG. 4 (color online). (a) Schematic representation of the
graphene island connected to the leads through a side site.
(b) Conductivity as a function of the shift in single-particle
energies due to applied gate voltage, �g, (c) Same as (b) but

without the site dependence of the incoming electron. The
oscillations of the spectral weight in (c) are purely to due
correlation effects and spin blockade.
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the Coulomb blockade peak is given by the conductivityGi

of the graphene quantum dot connected to leads via atom
‘‘i’’ [31] as shown schematically in Fig. 4(a). Spin and
correlation effects are reflected in the weight of the
Coulomb blockade peak proportional to the matrix element

jhN þ 1; J0; S0jcyi�jN; J; Sij2 which gives the transition
probability from state (N, J, S) to state (N þ 1, J0, S0)
when an additional electron is added to the site ‘‘i’’ of the
graphene quantum dot from the lead [29]. The ground state
configuration (N, J, S) is controlled by the gate voltage.
For our model graphene quantum dot with 7 degenerate
zero-energy states, we can add a total of 14 electrons.
Hence, one expects to obtain 14 Coulomb blockade peaks.
In Fig. 4(b) some of the peaks have zero height due to the
spin blockade phenomenon. For instance, the transitions
from (N ¼ 7, S ¼ 7=2) states to (N ¼ 8, S ¼ 0) states are
spin blocked since it is not possible to change the spin of
the system by �S ¼ �7=2 by adding one electron with
S ¼ 1=2. Similarly, transitions from (N ¼ 9, S ¼ 1=2
states to (N ¼ 10, S ¼ 4=2) states are spin blocked.
Besides the spin blockade, one sees strong oscillations of
the spectral function heights. This is due to (a) strongly
correlated nature of the states jN; Si, and (b) specific
choice of the site ‘‘i,’’ where the lead is attached to.
Here, we chose a site close to the middle of one of the
sides of the triangle. The overlap of the site wave function
is strongly dependent on the nature of the zero-energy
states. In particular, the existence of corner states, as dis-
cussed in Fig. 1, strongly affects the transition probabil-
ities. To isolate the effect of correlation to the lead’s
position, in Fig. 4(c) we plot the conductivity assuming
that the weight of the site ‘‘i’’ is a constant independent of
the zero-energy state. As a result, the weights of spectral
peaks are different, except for N ¼ 8, 9, 10 where the spin
blockade occurs. These results show how to detect the spin
depolarization in transport experiments. Ultimately, we
show here that one can design a strongly correlated elec-
tron system in carbon based material whose magnetic
properties can be controlled by applied gate voltage.
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